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Abstract. Contents displayed on web portals (e.g., news articles at Yahoo.com)
are usually adaptively selected from a dynamic set of candidate items, and the at-
tractiveness of each item decays over time. The goal of those websites is to max-
imize the engagement of users (usually measured by their clicks) on the selected
items. We formulate this kind of applications as a new variant of bandit problems
where new arms are dynamically added into the candidate set and the expected
reward of each arm decays as the round proceeds. For this new problem, a direct
application of the algorithms designed for stochastic MAB (e.g., UCB) will lead
to over-estimation of the rewards of old arms, and thus cause a misidentification
of the optimal arm. To tackle this challenge, we propose a new algorithm that
can adaptively estimate the temporal dynamics in the rewards of the arms, and
effectively identify the best arm at a given time point on this basis. When the
temporal dynamics are represented by a set of features, the proposed algorithm is
able to enjoy a sub-linear regret. Our experiments verify the effectiveness of the
proposed algorithm.

1 Introduction
The multi-armed bandit (MAB) problem is a typical example of sequential decision-
making problems under uncertain environments and can model many real-world ap-
plications such as an adaptive routing, clinical trials, and a variety of recommendation
problems. Among those applications, the recommendation problems, such as news rec-
ommendation [10] and social bookmarks [12], are attracting more and more attention
from both the academia and the industry. Using the language of MABs, a recommen-
dation problem can be described as follows. Given a set of K arms (candidate items)
to select (display), in each round (user visit) the system selects one arm from the set
and show it to the user. The system then receives a reward (whether the user clicks on
the item or not) for the arm. The goal of MAB is to design an algorithm that optimizes
the cumulative reward (the total number of user clicks given a number of user vis-
its), which is achieved by accurately identifying the arm with the best expected reward
(click-through rate (CTR)).

A well studied MAB problem is the so-called stochastic MAB, in which it is assumed
that the rewards of each arm is i.i.d. drawn from a fixed but unknown distribution. The
upper confidence bound (UCB) algorithm [6] is the standard algorithm in this problem.

� This work was done while the author was visiting Microsoft Research Asia.

T.-Y. Liu et al. (Eds.): WINE 2014, LNCS 8877, pp. 460–466, 2014.
c© Springer International Publishing Switzerland 2014



Time-Decaying Bandits for Non-stationary Systems 461

Fig. 1. Comparison between stochastic bandits and
time-decaying bandits. The left figure shows a stochas-
tic bandit where CTRs of the arms do not change
over time. The right one shows a time-decaying bandit,
where CTRs decay over rounds.

While the stochastic MAB suc-
cessfully models many problems,
it does not match well with the rec-
ommendation problems under our
investigation, because it ignores an
important factor of recommender
systems: the attractiveness of an
item to users decays over time. For
example, it has been reported that
new items (e.g., news articles in
a web portals, and tweets in so-
cial networks) usually have larger

CTRs than old ones [12], and a specific content will lose its attractiveness after being
repeatedly displayed to the users [3]. In this situation, a simple application of the al-
gorithms designed for stochastic MAB (e.g., UCB) will lead to over-estimation of the
rewards of old arms, and thus cause a misidentification of the optimal arm.

Actually, the recommendation problems correspond to a new type of MAB prob-
lems, which we call the “time-decaying MAB”, where the expected reward of each
arm decays with respect to time (see Fig. 1). Before investigating such problems, the
very first step is to characterize the decay factor. A simple way is to adopt a constant
decay factor and integrate it into the stochastic MAB algorithms. However, in many
real applications, such a characterization is inaccurate. This is because the decay factor
(including magnitude and decreasing speed) varies largely among arms. Take news ar-
ticles as examples. A breaking news usually quickly attracts a lot of attention, but the
attention may drop significantly in just several hours. In contrast, news articles such as
an enforcement of some national law usually warm up relatively slowly, but may attract
a long-term attention like a week or so. In this case, it would be more appropriate to
assume that the decaying factors for individual arms differ from each other and to learn
them in an online manner. For this purpose, the learning algorithm needs to make ex-
ploration to simultaneously understand both the stochastic properties and the decaying
factors of the rewards.

In this work, to solve the time-decaying MAB problems, we generalize the UCB
algorithm by incorporating the information about the temporal dynamics into the com-
putation of the upper confidence bounds of the arms. In particular, we represent the
temporal dynamics by a set of basic time-dependent functions which consists of both
fast and slow decays. The weights of individual functions are optimized by an applica-
tion of the linear bandit technology. As a result, our algorithm is able to estimate the
decay factor of each arm, which leads to an accurate estimation of the expected reward.
Also, by choosing the arm of the largest index like the UCB algorithm, our algorithm
balances exploration (give more chances to less selected arms for best arm identifica-
tion) and exploitation (choosing the arm with the largest observed reward).

To summarize, the major contributions of our work lie in two aspects: (1) According
to our knowledge, this is the first work that embeds temporal decay of the rewards into
MAB problems. (2) We design an algorithm to solve the time-decaying MAB problems,
the effectiveness of which is verified both theoretically and empirically.
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Fig. 2. CTR of an arm

2 Problem Setup

Time-decaying MAB extends stochastic MAB from two aspects: (1) new arms are con-
tinuously added to the candidate set, and (2) the expected reward of each arm decays
in rounds. Let n be the total number of rounds, and Kt be the set of available arms in
round t ∈ [n]. Let ri,t be the reward of arm i if it is selected at round t. In this work we
take news recommendation as an example and exclusively consider the case of click-
through feedback. Thus, in this case, ri,t is either 0 or 1, and the CTR of a news article
corresponds to the expected reward of an arm. Henceforth, we use “news article” and
“arm” interchangeably.

A time-decaying MAB goes as follows. At each round t = 1, 2, ..., n, a system
selects one arm It from the candidate set Kt and receives a random reward rIt,t. Note
that the reward information of the other arms are not available. The reward of arm
i is drawn from a Bernoulli distribution parameterized by μi,t, which assumes to be
represented as the sum of a constant part μi and several basic decaying functions (see
Fig. 2). Let f1(t− ti), ..., fd(t− ti) be the set of basic decaying functions and t− ti be
the number of rounds since arm i appears for the first time. The expected reward of arm
i at round t can be modeled as μi,t = μi+

∑d
k=1 ai,kfk(t−ti), where ai,k is the weight

associated with the k-th decaying function for arm i. Equivalently, by defining xi,t =
(1, f1(t − ti), · · · , fd(t − ti)) ∈ Rd+1 and θi = (μi, ai,1, ai,2, · · · , ai,d) ∈ Rd+1, we
can write μi,t = x�

i,tθi. That is, μi,t can be represented as a linear combination of a
(d + 1)-dimensional “context” xi,t which consists of the constant 1 and the values of
functions f1(t − ti), ..., fd(t − ti). We assume that the contexts and the weights are
bounded as ||xi,t|| ≤ L (||x|| =

√
x�x) and ||θi|| ≤ S, respectively.

We define the optimal arm i∗(t) as the arm with the largest expected reward at round
t: i∗(t) = argmaxi∈Kt μi,t. Unlike the stochastic MAB, the optimal arm in our prob-
lem may vary in rounds, which is the essential difficulty in this problem. The perfor-
mance of an algorithm is measured by the (pseudo) regret R(n), which is defined as the
difference between the cumulative expected reward of the optimal pulling policy (which
knows the expected rewards of all arms at each round) and that of the arms selected by
the algorithm: R(n) =

∑n
t=1 μi∗(t),t −

∑n
t=1 μIt,t.

3 Algorithm

The key to solve the time-decaying MAB problem, where the reward of an arm can be
represented as a linear combination of decaying functions, is to effectively estimate θi,
the weights of individual decaying functions, for each arm. This falls into the framework
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Algorithm 1. Time-decaying UCB
1: Inputs: a(t), f1(t− ti), ..., fd(t− ti).
2: for t = 1, 2, 3, ..., n do
3: for i ∈ Kt do
4: if arm i is new then
5: ti = t, Ai,t ← Id+1 and bi,t ← 0(d+1)×1

6: end if
7: xi,t ← (1, f1(t− ti), ..., fd(t− ti))

T

8: ci,t ← a(t− ti + 1)||xi,t||A−1
i,t

, and μ̂i,t ← x�
i,tA

−1
i,t bi,t

9: gi,t ← μ̂i,t + ci,t
10: end for
11: Choose arm It = arg max

i∈Kt

gi,t, and receive reward rIt,t ∈ {0, 1}
12: AIt,t+1 ← AIt,t + xIt,tx

�
It,t and bIt,t+1 ← bIt,t + rIt,txIt,t

13: for i �= It ∈ Kt do
14: Ai,t+1 ← Ai,t and bi,t+1 ← bi,t
15: end for
16: end for

of linear bandits [2,5,9,1], which perform an online estimation of linear weights with
bandit feedback. The difference is that our problem contains multiple linear bandits:
each arm can be considered as an instance of a linear bandit problem, whose context
consists of a constant term and a series of temporal functions, while there is only one
linear bandit in classical linear bandit problems1. In this sense, our problem is a hybrid
of multi-armed bandits and linear bandits plus temporal decays.

Our proposed Algorithm 1 is shown as above, which we call time-decaying UCB.
As can be seen, at each round of the algorithm, for each arm it constructs a matrix Ai,t

and a vector bi,t, which are the sum of the covariance and the reward-weighted sum
of features, respectively. μ̂i,t, the least square estimation of the reward at round t, is
given as x�

i,tA
−1
i,t bi,t. To guarantee the sufficient amount of exploration, we additionally

introduce a confidence bound term ci,t = a(t)||xi,t||A−1
i,t

, where ||x||A is the matrix-

induced vector norm
√
x�Ax. For the choice of a(t), we show in the next section that

a O(
√
log t) function is appropriate to give a reliable confidence bound. Time-decaying

UCB chooses the arm with the maximum UCB index gi,t = μ̂i,t + ci,t.

4 Regret Bound

The following theorem shows that the proposed algorithm possesses a sublinear regret
bound. The proof of the theorem, which combines the multi-armed bandit and the linear
bandit techniques, is in the full version of this paper.

1 There are several papers that analyze the regret of a linear bandit problem with multiple re-
gressors (e.g., Cesa-Bianchi et al. [11], and Agrawal and Goyal [4]). However, The analysis in
these papers are limited to the case where the set of arms does not change over time.
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Theorem 1. Let C(t, δ′) = 1
2

√
(d+ 1) log

(
1+tL2

δ′
)
+ S. By setting α(t) = C(t,

δ/|Kt|), the regret of the proposed algorithm is upper-bounded as follows with proba-
bility at least 1− δ2

R(n) ≤ 2C(n, δ/|Kall|)
√

|Kall|n(d+ 1)(L2 + 1) log

(

1 +
nL2

d+ 1

)

= Õ(
√
|Kall|n),

(1)
where Õ hides a polylog factor, and Kall is the set of all the arms through the run.

5 Experiments

In this section, we report the results of our simulation. The goal here is to compare the
empirical performance of the proposed algorithm with that of existing ones.

We simulate a news recommender system, where the decay pattern of CTR of each
news article is different from the others and new articles are continuously added into
the system.

Rounds and Articles: We try different values: n = {105, 105 1
3 , 105

2
3 , ..., 107}. For

each n, all the algorithms are run for 20 times and the results are averaged over the
runs. At the beginning of each run, there are 20 articles in the candidate set. Then new
articles are continuously added into the set. At the end of each run, 100 articles are
involved.

CTRs and Decay Factor: We set the CTR of the i-th article as μi,t = miy(Δi(t)/th,i),
where mi is its initial CTR when it is added into the system and y(Δi(t)/th,i) is the
decay function. The initial CTRs of all the news articles are independently drawn from
a uniform distribution in [0, 0.15]. We adopt the square root decay function y(x) =
1/

√
x+ 1, which is reported and used in a contest of news article recommendation

for Yahoo! Homepage [8]. th,i defines how fast CTR decays, and is independently
drawn from an exponential distribution P (th,i) = −λ exp (−t/λ) with λ = 0.02n.
Δi(t) = t − ti was the number of the rounds after the article is added into the system.
In this setting, CTR of the optimal article averaged over time is around 0.1, which is
similar to the case of the Yahoo! news article dataset [13]. Note that the above param-
eters (including the number of rounds, decay function, etc.) are notified to none of the
algorithms. Fig. 3 displays a part of time series of CTRs of the articles in a run.

Compared Algorithms: We take RANDOM, Exp3.S [7] and UCB [6] as baselines
for comparison: RANDOM is the algorithm that uniformly samples an article from all
available ones; Exp3.S is a variant of the Exp3 algorithm for switching environment;
and UCB is a stochastic bandit algorithm that ignores temporal dynamics. For our
time-decaying UCB, we implement three variants with different sets of the temporal
feature: (1) Decaying-UCB-3 has three temporal components {f1(Δi(t)), f2(Δi(t)),
f3(Δi(t))}= {y(Δi(t)/λ), y(2

4Δi(t)/λ), y(2
8Δi(t)/λ)}, (2) Decaying-

UCB-5 has five temporal components {f1(Δi(t)), f2(Δi(t)), ..., f5(Δi(t))} =
{y(Δi(t)/λ), y(2

2Δi(t)/λ), ...,y(2
8Δi(t)/λ)}, and (3) Decaying-UCB-9 has nine

2 We can set δ = O(1/n).
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Fig. 3. CTRs (= expected rewards) of articles
in a single run with n = 106. Each curve rep-
resents a CTR of an article. Most articles have
low CTR, and the optimal article switches fre-
quently.

Fig. 4. The log-log plot of the regret of the al-
gorithms. The horizontal axis is the number of
total rounds (depend on the scale factor s) and
the vertical line is the regret.

temporal components {f1(Δi(t)), f2(Δi(t)), ..., f9(Δi(t))} = {y(Δi(t)/λ), y(2Δi(t)
/λ), ..., y(28Δi(t)/λ)}. The hyper-parameters of the algorithms are set as follows:K in
Exp3.S is set to 100, and S (switching number) is chosen best among {1, 2, 5, 10, 20, 50,
100}. a(t) in UCB and in our time-decaying UCB, which determine the magnitude of
the exploration, are chosen to be the best among {0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0}×√
log t.

Regret Comparison: Fig. 4 shows the regrets of all the algorithms. RANDOM and
Exp3.S are clearly worse than UCB and time-decaying UCB. The performances of the
three variants of time-decaying UCB are very close: our algorithm is not very sensitive
to the selection of the basic decaying functions. Further, UCB and time-decaying UCB
perform similarly when n is small, and the latter performs much better when n ≥ 106.
Considering that the number of daily visitors of a web portal spans from millions to
hundreds of millions, it is rather easy to obtain a large n, and therefore our algorithm is
expected to perform better than other algorithms in real-world recommender systems.

6 Conclusion

In this paper, we have proposed a new type of bandit problems in which new arms are
dynamically added into the candidate set and the expected reward of each arm decays as
the round proceeds. The performance of the proposed algorithm is verified both theoret-
ically and empirically. For future works, we will (1) design new algorithms with better
regret bounds and (2) consider more complicated dynamics in real-world applications
that go beyond simple time decay.
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