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Abstract. Source-target attention mechanism (briefly, source attention)
has become one of the key components in a wide range of sequence gen-
eration tasks, such as neural machine translation, image caption, and
open-domain dialogue generation. In these tasks, the attention mecha-
nism, typically in control of information flow from the encoder to the
decoder, enables to generate every component in the target sequence re-
lying on different source components. While source attention mechanism
has attracted many research interests, few of them turn eyes to if the
generation of target sequence can additionally benefit from attending
back to itself, which however is intuitively motivated by the nature of
attention. To investigate the question, in this paper, we propose a new
target-target attention mechanism (briefly, target attention). Along the
progress of generating target sequence, target attention mechanism takes
into account the relationship between the component to generate and its
preceding context within the target sequence, such that it can better
keep the coherent consistency and improve the readability of the gener-
ated sequence. Furthermore, it complements the information from source
attention so as to further enhance semantic adequacy. After designing
an effective approach to incorporate target attention in encoder-decoder
framework, we conduct extensive experiments on both neural machine
translation and image caption. Experimental results clearly demonstrate
the effectiveness of our design of integrating both source and target at-
tention for sequence generation tasks.

Keywords: Sequence generation, target-target attention model, neural machine
translation, image captioning

1 Introduction

Recurrent Neural Network (RNN) based sequence generation, which aims to
decode a target sequence y given source input x, has been widely adopted in
real-world applications such as machine translation [1, 3], image caption [28, 30],
and document summarization [19]. Although some RNN variants which include
multiplicative gating mechanisms, such as LSTM [7] and GRU [1], can help

* This work was done when Yingce Xia was an intern at Microsoft Research Asia.



smooth the flow of historical information, it is not guaranteed to be sufficient,
especially when faced with long sequences. To overcome this difficulty, the atten-
tion mechanism [1,30,15] is introduced to RNN based neural models. Inspired
by human cognitive process, attention mechanism assumes that the generation
of each target component (i.e., a word) can rely on different contexts, either in
a “soft” form that depends on a weighted combination of all contextual compo-
nents [1,30], or in a “hard” way that assumes only one contextual component
can affect the target one [15]. Accordingly, attention mechanism can enable to
discover semantic dependencies between the source and the target sequences in
an end-to-end way.

Typical attention mechanisms model the dependency of target sequence on
the source input, which implies that the context of the attention only comes from
the source side input. Taking the “soft” attention mechanism as an example, to
generate the j-th component y; in y, an attentive weight associated with each
source side component x; is employed to describe how important each z; is for
y;. The attentive weights in fact follow the multinomial distribution, derived
from the matching degree between decoder’s hidden state s;_; and every hidden
state of the source encoder, represented as {hy, - - , hy, } with T, as the sequence
length of x. In other words, such attention is a source-target mechanism, in which
attentive information used in decoding only depends on the source-side encoder.

While the source-target attention (briefly, source attention) enables to pass
important semantics from source input to target sequence, it overlooks the im-
portant coherent information hidden in the target sequence itself. Intuitively,
beyond the selected source side parts, the generation of each target side com-
ponent can be affected by certain preceding components in target side as well,
especially when the target sequence is comparatively long. Apparently, such at-
tentive dependency cannot be captured by source attention alone.

Therefore, to build a more comprehensive mechanism for sequence gener-
ation, in this paper, we propose the target-target attention (briefly, target at-
tention), as a powerful complement to the source attention. In the proposed
approach, the generation of each target side component depends not only on
certain components in source side, but also on its prefix (i.e, the preceding com-
ponents) in the target sequence. Acting in this way, more accurate probabilistic
modelling for target sequence is achieved based on the better characterization
for dependency within target side. Furthermore, we observe that in the decoding
phase, even the semantics contained in source side could be enhanced due to the
stimulation brought by attending to target-side prefix. As a result, compared
with the source attention, our new approach can generate the target sequence
with a couple of advantages:

1. The coherent consistency gets improved;
2. Eliminated repeated and redundant textual fragments [26];
3. Adequate semantics reflecting source-side information.

Examples in Table 2 clearly demonstrate all these improvements.
We conduct extensive experiments on both neural machine translation (English-
to-French, English-to-Germany and Chinese-to-English translations) and image



caption. The results show that incorporating the target attention mechanism
effectively improves the quality of generated sequences.

The rest of the paper is organized as follows: the mathematical details of
target attention are introduced in Section 2. We report and analyze the experi-
ments on neural machine translation in Section 3, and image caption in Section 4.
Background related works are summarized in Section 5. The paper is concluded
in Section 6 together with perspectives on future works.

2 Target Attention Framework

In this section, we introduce the proposed target attention mechanism for se-
quence generation. The overall framework, together with several mathematical
notations used in this section, is illustrated in Fig. 1. As a preliminary, we in-
corporate the target-target attention mechanism into the RNN based sequence-
to-sequence network with source-target attention, which is briefly introduced in
the next subsection.

2.1 Source Attention based Sequence Generation

The sequence-to-sequence networks® typically include two components: the en-
coder network which encodes the source-side sequence and the decoder network
which decodes and generates the target-side sequence. The attention mechanism
acts as a bridge effectively transmitting information between the encoder and
decoder.

Concretely speaking, the encoder network reads the source input x and pro-
cesses it into a source-side memory buffer Mg,e = {h1, ha, -+, hr, } with size T.
For each i € [T,],* the vector h; acts as a representation for a particular part of
x. Here are several examples.

— In neural machine translation [1] and neural dialogue generation [21], the en-
coder networks are RNNs with LSTM/GRU units, which sequentially process
each word in x and generate a sequence of hidden states. The source-side
memory Mg, is composed of RNN hidden states at each time-step.

— In image captioning [30,28], the encoder network is a convolution neural
network (CNN) working on an image. In this task, M. contains low level
local feature map vectors extracted by the CNN, representing different parts
of the input image.

The decoder network is typically implemented using LSTM/GRU RNN to-
gether with a softmax layer. Specifically the decoder consumes every component
(i.e, word) y;,j € [Ty] in the target sequence y, meanwhile selectively reads from

3 In some scenarios such as image caption, the source-side input is not in a typical
sequential form. For the ease of statement but with a little inaccuracy, we still use
“sequence-to-sequence” as a general name even for these scenarios.

* For ease of reference, [T;] denotes the set {1,2,---, 7%}



the source-side memory Mg, to form attentive contextual vectors c§ (Eqn.(1)),
and finally generates each RNN hidden state s; for any j € [T,] (Eqn.(2)).
All these signals are then fed into the softmax-layer to generate the next-step
component, i.e., y; (Eqn.(3)):

C; = Q(Sj—la MsrC)v (1)
Sj :g(sj—hyj—hc?)v (2)
P(y]|y<J,.’IJ) X exp(yj; Sjvcg)' (3)

The source attention plays an important role in the generation of ¢, i.e, the
function ¢(-,-). Intuitively, the attention mechanism grants different weights on
source-side memory vectors h; € M. in generating each ¢f:

exp(Ae(si_1,h;

aij — = ( ( Jj—1 )) ; (4)
2 ky exp(Ac(sj-1, he))

C; = Z;-T:Ilaijhi. (5)

In Eqn.(4), A.(-,-) acts as the key component in source attention, typically
implemented as a feed-forward neural network.

2.2 Target Attention based Sequence Generation

Fig. 1. The structure of sequence-to-sequence learning with target attention.

From Eqn.(1) and Eqn.(4), it is not difficult to observe that the attention
weights are associated with the source-side memory M,... Apart from that, as
we have argued before, in sequence generation, better control over target-side
contexts, i.e., the components that have been generated so far in the target
sequence, is important as well. To add such target attention, we augment the
memory space read by decoder RNN by adding an extra target-side memory
Mgt to original source-side one Ms,.. The j-th step slice of such a target-side



memory is defined as Mt];gt = {s1,---,8j-1}, L.e., the hidden states before time
step® j.

Afterwards, to decode the word at j-th timestep, Mtjgt is read and weighted
averaged to form an extra contextual representation cj-l (Eqn.(7)), where the
weights are computed using a new attentive function A4(-,-) (Eqn.(6)). Intu-
itively speaking, 8;; represents how important the ¢-th (already) generated word
is for current decoding at time step j. Such attentive signals rising form target-
side memory M, are integrated into c?:

j(ip(Ad(SjA?St)) 7 (6)
w1 exp(Aq(sj—1,5k))

C}i = 21;11 Bijst- (7)

Brj =

Finally, c;-l is provided as an addition input to derive the hidden state s;
(Eqn.(8)) and softmax distribution P(y;) (Eqn.(9)), from which the j-th com-
ponent is chosen. The target-side memory also consequently gets updated as
Mtjg—ic_l = M‘ggt U {S]}

Sj :g(sj—lvyj—lacjvc?) (8)

€

P(y;ly<j, x) oc exp(y;; 55, ¢5, €F). 9)

To make it more clear, we further give the mathematical details of Eqn.(8) and
(9) in Eqn.(10) and (11) respectively. (We take GRU as an example here and
the mathematical formulation of LSTM can be similarly defined.)

sj=(1—z)0s;_1+z038j;

§; = tanh(Wy;_1+Ulr; o Sj—ﬂJrCeC?Jerc?);

e e d d (10)
Zj = O'(Wzyj,1 + UZijl + Cij + Cz Cj);
rj =o(Wryj—1 +Upsj—1 + Crc§ + C’,ﬁic;l).
P(y;ly<j, z) < exp(Wyy,—1 —&—Wsj—i—Wec;?—l—Wdc‘;). (11)

In Eqn.(8) ~ (11), bold symbols are what make our target attention enhanced
model different from conventional sequence-to-sequence model. The W’s, U’s and
(’s are the parameters of the network unit, o(-) denotes the sigmoid activation
function, and o indicates element-wise product.

3 Application to Neural Machine Translation

We evaluate our proposed algorithm on three translation tasks: English—French
(En—Fr), English—Germany (En—De) and Chinese—English (Zh—En).

5 For j < 2, let Mtlgt = (). Target attention starts to work when j > 2.



3.1 Settings

For En—Fr and En—De, we conduct experiments on the same datasets as those
used in [8]. To be more specific, part of data in WMT’14 is used as the bilin-
gual training data, which consists of 12M and 4.5M sentence pairs for En—Fr
and En—De respectively. We remove the sentences with more than 50 words.
newstest2012 and newstest2013 are concatenated as the validation set and new-
stest2014 acts as test set. For En—Fr, we limit the source and target vocabularies
as the most frequent 30k words, while for En—De, such vocabulary size is set as
50k. The out-of-vocabulary words will be replaced with a special token “UNK?”6.
For Zh—En, we use 1.25M bilingual sentence pairs from LDC dataset as train-
ing set and NIST2003 as validation set. Furthermore, NIST2004, NIST2005 and
NIST2006 all act as the test sets. Both source and target vocabulary sizes are
set as 30k for Zh—En.

The basic NMT model is the sequence-to-sequence GRU model widely adopted
in previous works [1, 8]. In such a model, the word embedding size and GRU hid-
den layer size are respectively set as 620 and 1000. For Zh—En, dropout with a
ratio 0.5 is applied to the last layer before softmax.

We use beam search algorithm [10] with beam width 12 to generate trans-
lations. The most common metric to evaluate translation quality is the BLEU
score [16], which is defined as follows:

| 1, c>r
BLEU = BP - exp Zzlogpn , BP= e e (12)

n=1

where c is the total number of candidate sentence pairs in the corpus, r is the
sum of the lengths for maximum perfect aligned translation subsequence in every
translation pair, and p, is a measure for n-gram translation precision.
Following the common practice in NMT, for En—Fr and En—De, the trans-
lation quality is evaluated by tokenized case-sensitive BLEU score”. For Zh—En,
the BLEU scores are case-insensitive. Furthermore, to demonstrate better lan-
guage modelling brought by target attention, we apply the perplexity [13] of
target sentences conditioned on source sentences as another evaluation metric,
which measures not only the translative correspondence of (source, target) pair,
but also the naturalness of the target sentences. The perplexity is defined as

follows: o

> iz110g P(y(i)|x(i)) }
Z£1 N ’
where D = {(z(i),y(i))};2, is the test set containing M bilingual language
sentence pairs and V; is the number of words in target sentence y(i).

ppI(D) = exp { - (13)

5 We focus on the word-level translations, instead of subword-level ones like BPE [20].
The reason is that BPE cannot be applied to some languages like Chinese, although
it works well for other languages like German and Czech.

" The script is from https://github.com/moses-smt/mosesdecoder/blob/master/
scripts/generic/multi-bleu.perl



To reduce training time and stabilize the training process, following the com-
mon practice [23,25], for all the three translation tasks, we initialize the target
attention accompanied NMT models with the basic NMT models without tar-
get attention, i.e., the RNNSearch models [1]. (Note that training from scratch
would lead to similar results as those obtained by training from warm-start
models.) The three RNNSearch models used for warm start are all trained by
Adadelta [33] with mini-batch size as 80, and these initialized models are able
to reproduce the public reported BLEU scores in previous works.

After model initialization, we adopt vanilla SGD with minibatch size 80 to
continue model training. According to the validation performance, the initial
learning rates are set as 0.4, 0.4 and 0.1 for En—Fr ,En—De and Zh—FEn re-
spectively. During the training process, we halve the learning rates once the
BLEU on validation set drops. We clip the gradients [17] with clipping threshold
1.0, 5.0 and 1.0 for En—Fr, En—De and Zh—En respectively. When halving
learning rates cannot improve validation BLEU scores, we freeze the word em-
bedding and continue model training for additional several days [8], leading to
total training time of roughly one week for all the three translation tasks.

3.2 Quantitative Results

The experimental results are shown in Table 1. In this table, “RNNsearch” refers
to the warm-start model, i.e., the sequence-to-sequence neural machine transla-
tion model with only source attention; “Target Attn” refers to our target atten-
tion enhanced NMT model.

Table 1. BLEU scores and perplexities of different Neural Machine Translation Models

BLEU Perplexities

En—Fr|En—DeMT04|MT05MT06|| En—Fr| En—De/MT04MT05/MT06

RNNSearch| 29.93 | 16.47 |34.96 |34.57|32.74| 4.71 7.36 |13.05|11.85|15.03

Target Attn| 31.63 | 17.67 |36.71|35.62|33.78 | 4.19 6.87 |12.34|11.24|14.27

One can see that by introducing target attention into conventional NMT
model, we can achieve significant improvements on all the three translation tasks.
For En—Fr, the gain of BLEU brought by target attention is 1.7; for En—De,
we improve BLEU by 1.2; furthermore, the average improvement for Zh—En
is 1.28 BLEU point. By applying the statistical significance test for machine
translation [11], we get that the results of our target attention mechanism is
significantly better than RNNSearch with p-values p < 0.01. These results well
demonstrate that our target attention algorithm is an effective approach that
consistently and significantly improves the performances of different NMT tasks.

After obtaining the translation results, we further process them by the widely
used post-processing technique proposed by [8], that is able to replace the “UNK”
token in translation sentences. The steps include:



1. Get a word-level translation table 7 that maps the source language words
to target language words; we use the fastAlign® [5];

2. Given any translated sentence g, for each of its word g;, if §; is UNK, find the
corresponding source side word x; according to the attention weights learnt
in NMT model, i.e., i = argmax;cy; (refer to the definition in Eqn.(4));

3. Look up the table T to get the corresponding translation for source word x;.

By applying this technique to En—Fr translation, we can further improve the
BLEU to 34.49, which is a new best result for En—Fr translation conditioned
on (i) the model is a single-layer NMT model; (ii) the model is trained with only
bilingual data.

N
©

En—Fr BLEU
N
©

27
26
251 <10 10~20 20~30 30~40 40~50 50~60 >60
24 —a— RNNSearch |
—A— QOurs
23 ‘ ‘ ‘ ; ‘
<10 10~20  20~30  30~40  40~50  50~60 >60
Sentence Length

Fig. 2. BLEU w.r.t. input sentence length

We further record the average BLEU scores in En—Fr task for different
bilingual sentence pair buckets that are determined by source sentence length
and visualize them in Fig. 2. The chart inside Fig. 2 shows the improvements of
BLEU score by adding target attention. From this figure we can see that with
target attention, the BLEU scores for all buckets clearly increase. Specially,

1. For sentences with [10,50) words, the longer the sentence is, the more im-
provement is brought by the target attention. This clearly verifies the effec-
tiveness of target attention in capturing long-range dependency.

8 The script is from hitps://github.com/clab/fast_align



2. For sentences with fewer than 10 words, our target attention also brings
significant improvements. Note that although the calculation of BLEU is
quite sensitive for very short sentences (e.g., ps in Eqn.(12) is very likely to
be zero for sentence-level BLEU), we can still generate better sentences with
target attention.

3. Even we remove the sentences with more than 50 words from the train-
ing corpus, target attention can achieve improvements on such un-trained
subsets containing extremely long sentences (i.e, > 50 words), although im-
provements brought by target attention are slightly less compared to those
in the region [10, 50).

In the right part of Table 1 we additionally report the performances of dif-
ferent models using another evaluation measure, i.e., the perplexity, to represent
how smooth and natural the translation is?. It can be observed that by incorpo-
rating target attention, the perplexity scores are decreased by 0.52, 0.49 and 0.69
points for En—Fr, En—De and Zh—En respectively. Such improvements clearly
demonstrate the advantages of target attention in generating more smooth trans-
lations, mainly out from better dependency modeling within target translation
sentence.

3.3 Subjective Evaluation

To better understand and visualize the benefits that target attention brings to
NMT, we give three concrete Zh—En examples in Table 2. For each example,
we highlight some important parts by bold words to demonstrate either the
limitations of baseline model, or the improvements led by incorporating target
attention. As discussed in Section 1, the three examples respectively show that
target attention:

1. Improves long range semantic consistency such as matching the subjects
perfectly and avoiding such pattern as “The founding was the company”;

2. Eliminates repeated translations such as “economy could slow down”'9;

3. Enhances semantic integrity such as successfully translates “bimen” and “xi-

Jreweigian gongbu” in the last example.

Our intuitive explanation for these improvements is that target attention en-
hances the ability to model a natural sentence, due to which the inconsistent
and repeated translations would be assigned with low probabilities and thus not
selected. The punishment towards such wrong translation patterns will compar-
atively improve the possibility of right translation that has not been translated
yet, thereby alleviating the semantic inadequacy issue.

9 For Zh—En, each source sentence x has four references y(j) j € {1,2,3,4}. To
calculate the perplexities, we simply regard them as four individual sentence pairs
(2, y(5)).

10" Although the coverage model in [26] can eliminate repeated translations, it is actually
based on source-target attention but not target-target attention. Therefore, [26] can
be further combined with our proposed target-target attention. We leave it as a
future work.



Table 2. Translation examples. Source, Base, Ours, Ref denote the source sentence,
the RNNSearch, target attention and the reference sentence respectively.

Source

Base

Ours

Ref

e tianrangi gongye gufengongst chengli yu 1993nian2yue , shi shijieshang
zuida de tianrangi kaicai gongsi .

the founding of the russian gas industry in February 1993 was the world ’s
largest natural gas mining company .

founded in February 1993 , the russian gas industrial corporation is

the world ’s largest producer of natural gas mining .

Established in February 1998 , Gazprom is the largest natural gas exploitation
company in the world .

Source

Base

Ours

Ref

youyu riyuan shengzhi he pinfu chaju rijian kuoda keneng pohuai jinnian
shangbannian zriangyou de nazhong hexie gifen, riben jingji keneng fanghuan
sudu , mairu 2005 nian

japan ’s economy could slow down as the japanese economy could slow
down as the yen appreciated and the disparity between the rich and the poor
as a result of a growing gap between the rich and the poor .

japan s economy may slow down in 2005 as the yen ’s appreciation and

the growing gap between the rich and the poor may damage the

harmonious atmosphere in the first half of the year .

Japan ’s economy may slow down towards 2005 as yen appreciation and a
widening gap between the rich and poor could break the harmonious
atmosphere it enjoyed in the first half of this year .

Source

Base

Ours

Ref

Xizang liuwang jingshen lingzriu dalai lama de teshi zhengzai beijing

he zhongguo guanyuan jinzring bimen huiyi, xijie weijian gongbu .
the special envoy of the dalai lama , tibet ’s exiled spiritual leader , was
scheduled to meet with chinese officials and officials from the tibetan
spiritual leader in beijing and chinese officials .

the special envoy of tibet ’s exiled spiritual leader , the dalai lama ,

is holding a closed-door meeting with chinese officials , and the
details were not disclosed.

The special envoy of the Dalai Lama , exiled Tibetan spiritual leader ,
is currently in Beijing carrying out closed meetings with Chinese officials,
but the details have not been released .

3.4 Discussion

In this subsection, we carry out some discussions about our proposed target-
target attention framework:

1. For decoding speed, our approach indeed takes 17% more time for decoding
than previous approach without target attention, considering we have an ad-
ditional target-target attention model. Such a cost is acceptable considering
the BLEU score improvements (i.e., 1.7pts for En—Fr, 1.2pts on En—De
and 1.28pts for Zh—En. )

2. A degenerated version of our target-target attention is to use delayed mem-
ory. Mathematically, when predicting the ¢’th word, not only the hidden
state s;_1 at step t — 1, but also the one s;_, at step t — 7 are used where
7 is a fixed number. Note such the degenerated model might not work well.



Take 7 = 2 as an example. For the third example in Table 2, “Details were
not disclosed” should be attended to “closed-door”, which is far from ¢ — 2.
Delayed memory cannot handle this case since it does not know how many
steps to delay. Our model works well due to its adaptive and dynamic at-
tention mechanism.

3. The improvements of target-target attention are not caused by better opti-
mization properties of the new RNN;, since its architecture is more complex
and more difficult to optimize.

4 Application to Image Captioning

To further verify the effectiveness of incorporating target attention into sequence
generation models, we then apply the proposed model to image caption, which
targets at describing the content of an image with a natural sentence.

4.1 Settings

We choose a public benchmark dataset, Flickr30k [32], for image caption. In this
dataset, every image is provided with 5 reference sentences. We follow the data
splitting rule as that used in [9, 30] such that the dataset is separated into 28000
training samples, 1000 validation samples and 1000 test samples.

We follow the same model structure as that proposed in [30]. The Oxford
VGGnet [24] pretrained on ImageNet is used as the image encoder, which could
eventually output 196 features per image, with each feature as a 512 dimensional
vector. The decoder is a 512 x 512 LSTM RNN. Dropout with drop ratio 0.5
is applied to the layer before softmax. The vocabulary is set as the most 10k
frequent words in the dataset. Soft source attention is chosen due to better
performance in our implementation. In implementation, we base our codes on
the open-source project provided by [30]'1.

The captions for all images are generated using beam search with beam
size 10. To comprehensively evaluate their quality, we adopt several different
measures. Following [30], we report the BLEU-3, BLEU-4 without a brevity
penalty, which respectively indicates tri-gram and four-gram matching degree
with groundtruth caption. Besides, we report the CIDEr, another widely used
metric for image caption [27, 28]. CIDEr also measures n-gram matching degree,
in which each n-gram will be assigned a TF-IDF weighting [18]. For all these met-
rics, the larger, the better. In addition, we report test perplexities (the smaller,
the better) to evaluate whether target attention improve sentence smoothness
in image caption task. (Refer to Eqn.(13) for the definition of perplexity.)

At the beginning of training process, we warm start our model with a pre-
trained model with only source attention, which is previously optimized with
Adadelta for about one day. Then in the training process, we incorporate tar-
get attention mechanism into the initialized captioning model and continue to
train it using plain stochastic gradient descent for another one day, with a fixed
learning rate as 0.05 selected by validation performance.

" https://github.com/kelvinxu/arctic-captions



4.2 Results

We present our results in Table 3. The second row, labeled with “source-attn”
represents the performance of baseline captioning model, which approximately
matches the numbers reported in [30] (e.g, BLEU-3 as 28.8 and BLEU-4 as 19.1),
while the third row labeled with “Ours” records the results after adding target
attention into caption generation.

Table 3. Results of image caption with/without target attention. For perplexity, the
lower, the better, while for other measures, the higher, the better.

BLEU-3|BLEU-4|CIDEr|perplexity
source-attn| 28.3 19.0 37.6 28.56
Ours 29.6 20.5 40.4 23.06

From Table 3, we can clearly see that target attention achieves significant
improvements over baseline in terms of all evaluation measures. In particular, the
decrease of perplexity further demonstrates the better probabilistic modelling for
captions by adding target attention.

Table 4. Two examples showing different captioning result

& 5 b Pt
source-attn|A group of people are playing instruments on stage

Ours |A band is playing on stage in front of a crowd
Ref (1) Two men , one sitting , one standing , are playing their guitars on
stage while the audience is looking on .
(2) band doing a concert for people
source-attn|A black dog is running through the grass

Ours |A black dog is running through the grass with a toy in its mouth

Ref (1) A curly brown dog runs across the lawn carrying a toy in its mouth
(2) The black dog is running on the grass with a toy in its mouth .

We also list two examples of image caption in Table 4, including the im-
age, its two referenced captions (marked by “Ref”) and the captioning results



with/without target attention (respectively marked by “source-attn” and “Ours”).
It is clearly shown that target attention mechanism generates better captions
for both images (see the highlighted underlined words), mainly owing to the en-
hanced stimulation from already generated words in target side, right brought
by target attention.

To better demonstrate how target attention helps to improve the image cap-
tion quality, we take the right figure in Table 4 as an example and analyze the
target attention weights in the decoder. To be concrete, in the internal green bar
chart of Fig. 3, we show the weights of the previously generated words when gen-
erating the last word mouth in our caption (i.e, A black dog is running through
the grass with a toy in its mouth). Here we remove the most common words
like a, is to make the illustration more compact and clearer. Simultaneously, the
outer bar chart in Fig. 3 shows the words co-occurrence statistics for the word
mouth, which is calculated by

The number of sentences containing word; and mouth

co-occurrence(word;) = —
( ) The number of sentences containing mouth

From the outer chart, it is clearly observed that mouth is highly correlated to
relevant words such as dog and black. The target attention thereby stimulates
the generation of word mouth, by learning from the significant weights assigned
to these two previously decoded words. This clearly shows that target attention
mechanism accurately characterizes the semantic relation among the decoded
words, thus improves both the coherence and completeness of the caption by
attending to the past.

5 Related Work

The attempt of applying attention mechanism with deep learning dates back
to several works in computer vision, represented by [4], [15] and [30]. Particu-
larly [15] and [30] leverage a “hard” attention mechanism, which in every step
attend to only one part of the image. For NMT, [1] first incorporates the “soft”
attention mechanism that automatically assign attentive weights to every source
side words in decoding target sentence word. Since then many varieties have been
designed to improve such a source-target attention mechanism for neural ma-
chine translation. For example, [12] proposes a local attention model, which is
effective and computationally efficient. In this model, for each decoding step ¢,
the attention weights are only assigned over a subset of source hidden states
within a window [p; — D,p; + D], where D is the window size, and p; is the
window center determined by a selective mechanism.

There are some other works that target improving the network structure for
attention model in neural machine translation. For example, [14] propose an
interactive attention model for NMT named as NMT1s. NMT;a can keep track
of the interaction between the decoder and the representation of source sentence
during translation by both reading and writing operations, which are helpful to
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improve translation quality. Similarly, [31] design a recurrent attention model,
in which the attention weights are tracked by an LSTM.

As to decoder side, [22] proposes a self-attention model to maintain coherence
in longer responses for neural conversation model: the decoded words would be
concatenated with words in the source side encoder by their embeddings, and
the self-attention model will generate contexts by these “faked” words. Such
a proposal does not fit to other sequence-to-sequence tasks when the words in
the encoder and decoder are not in the same language, like NMT and image
caption. Therefore, such a model based on source-target words concatenation
is limited and cannot be generalized to more general scenarios. [2] proposed a
similar model like ours but [2] did not focus on sequence generation tasks.

6 Conclusion

In this work, motivated from tailored observations and analysis, we design a
target attention model to enhance the dependency within decoder side com-
ponents and thereby improve performances of sequence generation tasks. We
conduct extensive evaluations and analysis on neural machine translation and
image caption. Significant better results with the proposed model are observed
on these two tasks, which illustrate the effectiveness of target attention.



There are many interesting directions left as future works. First, we aim to
adapt target attention into different model structures [29] and different training
techniques [23, 6]. Second, we plan to study how to make the target attention
model more effective by combining it with the advanced source attention mech-
anisms discussed in related work. Last, target attention will be tested on more
tasks such as document summarization, neural dialogue generation and question-
answering.
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