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ABSTRACT
This paper is concerned with learning to rank for information 

retrieval (IR). Ranking is the central problem for information 

retrieval, and employing machine learning techniques to learn the 

ranking function is viewed as a promising approach to IR.

Unfortunately, there was no benchmark dataset that could be used 

in comparison of existing learning algorithms and in evaluation of 

newly proposed algorithms, which stood in the way of the related 

research. To deal with the problem, we have constructed a

benchmark dataset referred to as LETOR and distributed it to the 

research communities. Specifically we have derived the LETOR 

data from the existing data sets widely used in IR, namely, 

OHSUMED and TREC data. The two collections contain queries,

the contents of the retrieved documents, and human judgments on 

the relevance of the documents with respect to the queries. We 

have extracted features from the datasets, including both 

conventional features, such as term frequency, inverse document 

frequency, BM25, and language models for IR, and features 

proposed recently at SIGIR, such as HostRank, feature 

propagation, and topical PageRank. We have then packaged

LETOR with the extracted features, queries, and relevance 

judgments. We have also provided the results of several state-of-

the-arts learning to rank algorithms on the data. This paper

describes in details about LETOR.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]

General Terms
Algorithms, Performance, Experimentations

Keywords
Learning to Rank, Benchmark Datasets

1. INTRODUCTION
Ranking is the central problem for many information retrieval (IR)

applications. These include document retrieval [3], collaborative 

filtering [14], key term extraction [8], definition finding [32],

important email routing [4], sentiment analysis [26], product 

rating [9], and anti web spam [13]. In the task, given a set of

objects, we utilize a ranking model (function) to calculate the 

score of each object and sort the objects with the scores. The 

scores may represent the degrees of relevance, preference, or 

importance, depending on applications. 

Learning to rank is aimed at automatically creating the ranking 

model using training data and machine learning techniques. A 

typical setting in learning to rank is that feature vectors and ranks 

(ordered categories) are given as training data. A ranking model is 

learned based on the training data and then applied to the unseen 

test data. Because of the advantages it offers, learning to rank has 

been gained increasing attention in IR. Many methods have been 

proposed (e.g., [2], [5], [6], [7], [10], [16], [20], [22], [23]) and 

applied to IR applications (e.g., [3], [12], [27], [31], [32], [33]).

Unfortunately, the experimental results in the papers were 

obtained from different datasets and under different settings, and 

thus it was impossible to make a direct comparison between the 

results. This became a blocking issue for future research and 

development, in contrast to the situations in many other fields in 

machine learning in which research has been significantly 

enhanced by the availabilities of benchmark datasets, such as 

Reuters 21578 [36] and RCV1 [10] for text categorization, and 

SANBI EST [37] for clustering. Therefore, it would be very 

beneficial, if benchmark datasets for learning to rank could be 

developed. This is exactly the problem we want to address here.

In this work, we have built a benchmark dataset named LETOR.

We have extracted features from two widely-used data collections 

in information retrieval (the OHSUMED collection used in the 

information filtering task of TREC 2000, and the “.gov”

collection used in the topic distillation task of TREC 2003 and 

2004). These two collections contain queries, their associated

documents, and human judgments on the relevance of the 

documents with respect to the queries. The features we extracted 

include both conventional features (term frequency, inverse 

document frequency, document length, BM25 [29], and Language 

Models for Information Retrieval [35]) and new features proposed 

recently at SIGIR (HostRank [34], feature propagation [28] and 

topical PageRank [25]). We have packaged the extracted features,

queries, and relevance judgments into the LETOR dataset. Given 

the fact that the topic distillation tasks of TREC 2003 and TREC 

2004 have different query sets, we actually have three subsets in 

the LETOR dataset: OHSUMED, TD2003, and TD2004. We have 

partitioned each subset into a training set, a validation set, and a

test set. We have run several state-of-the-arts learning to rank 

algorithms on the subsets and report their ranking performances in 

this paper. We also discuss future research directions that people 

can explore using the LETOR dataset.

This paper provides the details on the feature extraction, data 

partitioning, and baseline experimental results regarding to the 

LETOR dataset. We begin in Section 2 by describing the original 

collections of OHSUMED and “.gov”. Section 3 shows the list of 

features we extracted from the collections, and discusses how to 

partition the dataset for training, validation, and testing. Section 4

reports the ranking performances of the state-of-the-arts ranking 

algorithms on the dataset. Section 5 discusses the potential 

research directions. The last section concludes the paper.
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2. DATA COLLECTIONS

2.1 The OHSUMED collection

The OHSUMED collection [15] was created for information 

retrieval research. It is a subset of MEDLINE, a database on 

medical publications. The collection consists of 348,566 records 

(out of over 7 million) from 270 medical journals during the 

period of 1987-1991. The fields of a record include title, abstract, 

MeSH indexing terms, author, source, and publication type. 

There are 106 queries, each with a number of associated 

documents. A query is about a medical search need, and thus is 

also associated with patient information and topic information. 

The relevance degrees of documents with respect to the queries 

are judged by humans, on three levels: definitely relevant,

partially relevant, or not relevant. There are a total of 16,140 

query-document pairs with relevance judgments.

The MEDLINE documents have the same file format as those in 

the SMART system, with each field defined as below (NLM 

designator in parentheses):

· .I Sequential identifier

· .U MEDLINE identifier (UI)

· .M Human-assigned MeSH terms (MH)

· .T Title (TI)

· .P Publication type (PT)

· .W Abstract (AB)

· .A Author (AU)

· .S Source (SO)

For each query in the OHSUMED collection, the patient and topic 

information are defined in the following way:

· .I Sequential identifier

· .B Patient information

· .W Information request

Many research papers [33] [27] have been published using the 

OHSUMED collection. However, since the features and the data 

partitions used in these papers are different, direct comparisons 

between their experimental results might not be meaningful. 

Considering this, it will be desirable if we can have a ‘standard’

feature set and data partitioning scheme for the OHSUMED 

collection. This is the motivation of this paper.

2.2 The “.gov” collection

In TREC 2003 and 2004, there is a special track for web 

information retrieval, named the web track. The goal of this track 

is to investigate the retrieval behavior when the collection to be 

searched is in a large hyperlinked structure such as the World 

Wide Web. The web tracks used the “.gov” collection, which is

based on a January, 2002 crawl of the “.gov” domain. There are in 

total 1,053,110 html documents in this collection, together with 

11,164,829 hyperlinks.

Topic distillation is one of the tasks in the web track, which aims 

to find a list of entry points for good websites principally devoted 

to the topic. The focus is to return entry pages of good websites 

rather than the pages containing relevant information themselves, 

since the entry pages provides a better overview of the coverage 

of a topic in the collection. TREC committee provides judgment 

for the topic distillation task. The human assessors make binary 

judgments to as whether a page is appropriate to a given query. 

That is, a page is judged relevant only if it is the entry page of 

some website which is principally devoted to the query topic. In 

this regard, this task is very similar to the Web search scenario. 

There are 50 queries and 75 queries in topic distillation tasks of 

TREC 2003 and 2004, respectively.

Many research papers [27], [28], [33], [34] have been published 

using the topic distillation task on the “.gov” collection as their 

experimental platform. Similar to the situation for the OHSUMED 

collection, since the features and the data partitions are different 

in these papers, the corresponding experimental results are not 

directly comparable. This motivates us to extract ‘standard’

features and provide ‘standard’ data partitioning schemes for the 

“.gov” collection.

3. FEATURE EXTRACTION AND DATA 

PARTITIONING

When extracting features for the aforementioned purpose, we 

followed the principles as below:

(1) We try to cover as many classical features in IR as possible.

(2) We try to reproduce all the features proposed in recent 

SIGIR papers that used the OHSUMED collection or the 

“.gov” collection for their experiments.

(3) When extracting features, we conform to the original 

documents or papers. If the authors mentioned parameter 

tuning with regard to the feature, we also conducted 

parameter tuning. If the authors only provided a default 

parameter and have not mentioned parameter tuning, we 

used their default parameter directly in our feature 

extraction process.

3.1 Features for the OHSUMED collection

We extracted features from each judged query-document pair in 

the OHSUMED collection. We index the fields of .T (title) and .W

(abstract) for documents and the field .W for queries. For both 

documents and queries, the field .I is used as id. 

We extracted both ‘low-level’ and ‘high-level’ features from the 

OHSUMED collection. Low-level features include term 

frequency (tf), inverse document frequency (idf), document length 

(dl) and their combinations [1]. High-level features include the 

outputs of BM25 [29] and LMIR [35] algorithms. In particular, 

for LMIR, different smoothing methods (DIR, JM, ABS) [35]

were utilized. In total, we extracted 25 features (10 from title, 10 

from abstract, and 5 from ‘title + abstract’). These features are 

summarized in Table 1 and Table 2. Note that we refer to those 

features proposed in recent SIGIR papers as “SIGIR feature”.

3.2 Features for the TREC collection

Since there are many documents (webpages) in the “.gov”

collection, when extracting features, we first used BM25 to rank 

all the documents with respect to each query, and then extracted 

features from the top 1000 documents. Considering that some 

relevant documents (judged by the TREC committee) may not 

appear in the top 1000 results according to their BM25 scores, we 

also extracted features from all the relevant documents for each 

query. The features can be classified into four categories.
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Table 1. Low-level Features and their descriptions

Feature Formulations Descriptions References

L1 ∑  (!" ,#)!"∈!⋂# Term 

frequency (tf)
[1]

L2 ∑ log( (!" ,#) + 1)!"∈!⋂# SIGIR feature [23]

L3 ∑  (!" ,#)
|#|!"∈!⋂# Normalized tf [1]

L4 ∑ log & (!" ,#)
|#|

+ 1'!"∈!⋂# SIGIR feature [23]

L5 ∑ log & |*|

#+(!")
'!"∈!⋂# Inverse doc 

frequency

(idf)
[1]

L6 ∑ log &log & |*|

#+ (!")
''!"∈!⋂# SIGIR feature [23]

L7 ∑ log & |*|
 (!" ,*)

+ 1'!"∈!⋂# SIGIR feature [23]

L8 ∑ log & (!" ,#)
|#| log & |*|

#+ (!")
' + 1'!"∈!⋂# SIGIR feature [23]

L9 ∑  (!" ,#) log & |*|

#+(!")
'!"∈!⋂# tf*idf [1]

L10 ∑ log & (!" ,#)
|#|

|*|

 (!" ,*) + 1'!"∈!⋂# SIGIR feature [23]

Table 2. High-level Features and their descriptions

Feature Descriptions References

H1 BM25 score [29]

H2 log(BM25 score) [29]

H3 LMIR with DIR smoothing [35]

H4 LMIR with JM smoothing [35]

H5 LMIR with ABS smoothing [35]

1) Low-level Content Features
Low-level content features include term frequency (tf), inverse 

document frequency (idf), document length (dl), and their 

combinations (e.g. tf*idf) [1]. For each of these features, we have 

four different values corresponding to the four fields of a webpage: 

body, anchor, title, and URL. 

2) High-level Content Features
High-level content features include the outputs of BM25 [29] and 

LMIR [35] algorithms. We extracted four BM25 features in total, 

using the whole document, anchor text, title, and extracted title 

[17], respectively. For LMIR, different smoothing methods (DIR, 

JM, and ABS) and three fields (anchor, title, and extracted title) 

were used. As a result, there are nine language model features in

total. 

3) Hyperlink Features
Hyperlink features include PageRank [25], HITS [21], and their 

variations (HostRank [34], topical PageRank and topic HITS [24]). 

Since HITS and topical HITS have both authority and hub scores, 

there are 7 hyperlink features in total.

4) Hybrid Features
Hybrid features refer to those features containing both content and 

hyperlink information, including “hyperlink-based relevance 

propagation” [30] and “sitemap-based relevance propagation” 

[28].

In total, we extracted 44 features for each query-document pair. 

The complete feature list is shown in Table 3. Note that we refer 

to those features proposed in recent SIGIR papers as “SIGIR

feature”.

Table 3. All the features for the TREC datasets

Feature Descriptions References

1 BM25 [27]
2 document length (dl) of body 

[1]
3 dl of anchor 

4 dl of title

5 dl of URL

6 HITS authority
[21]

7 HITS hub

8 HostRank (SIGIR feature) [34]
9 Inverse document frequency (idf) of body 

[1]
10 idf of anchor 

11 idf of title

12 idf of URL

13 Sitemap based feature propagation (SIGIR 

feature)
[28]

14 PageRank [25]
15 LMIR.ABS of anchor [35],
16 BM25 of anchor

17 LMIR.DIR of anchor

[35]
18 LMIR.JM of anchor

19 LMIR.ABS of extracted title (SIGIR 

feature)

20 BM25 of extracted title (SIGIR feature) [29]
21 LMIR.DIR of extracted title (SIGIR 

feature)
[35]

22 LMIR.JM of extracted title (SIGIR feature)

23 LMIR.ABS of title

24 BM25 of title [29]
25 LMIR.DIR of title

[35]
26 LMIR.JM of title

27 Sitemap based feature propagation (SIGIR 

feature)
[28]

28 tf of body 

[1]

29 tf of anchor 

30 tf of title

31 tf of URL

32 tf*idf of body 

33 tf*idf of anchor 

34 tf*idf of title

35 tf*idf of URL

36 Topical PageRank (SIGIR feature)

[24]37 Topical HITS authority (SIGIR feature)

38 Topical HITS hub (SIGIR feature)

39 Hyperlink base score propagation: 
weighted in-link (SIGIR feature)

[28] [30]

40 Hyperlink base score propagation: 

weighted out-link (SIGIR feature)

41 Hyperlink base score propagation: uniform 
out-link (SIGIR feature)

42 Hyperlink base feature propagation: 

weighted in-link (SIGIR feature)

43 Hyperlink base feature propagation: 
weighted out-link (SIGIR feature)

44 Hyperlink base feature propagation: 

uniform out-link (SIGIR feature)

3.3 Feature Normalization

Since the absolute values of a feature for different queries might

not be comparable, we conducted query-based normalization for 

each feature. Suppose there are ,(") documents {#-(")|- =

1,… ,,(")} with respect to query " in the dataset. A feature of 
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document #-(") is represented as .-(") (- = 1,… ,,(") ). Then after 

normalization, the feature will become

.-
(")−min {.0

(")
,0=1,…,,(")}

max 1.0
(")

,0=1,…,,(")2−min {.0
(")

,0=1,…,,(")}
.

3.4 Dataset Partitioning

As aforementioned, in the LETOR dataset, we have three query 

sets: one for OHSUMED with 106 queries, one for the topic 

distillation task of TREC 2003 (TD2003) with 50 queries, and 

another for the topic distillation task of TREC 2004 (TD2004)

with 75 queries. As a result, we actually have three subsets in the 

LETOR dataset for experimental studies: OHSUMED, TD2003,

and TD2004. 

We partitioned each subset into five parts, denoted as S1, S2, S3,

S4, and S5, in order to conduct five-fold cross validation. For each 

fold, we used three parts for training, one part for validation, and 

the remaining part for testing (See Table 4). The training set is 

used to learn the ranking model. The validation set is used to tune 

the parameters of the ranking model, such as the number of 

iterations in RankBoost, and the combination coefficient in the 

objective function of Ranking SVM. The test set is used to report 

the ranking performance of the model. Note that since we conduct 

five-fold cross validation, the reported performance in this paper 

is actually the average over different folds.

The LETOR dataset, containing the aforementioned feature 

representations of documents, their relevance judgments with 

respective to queries, and the partitioned training, validation and 

test sets have been release at the website of Microsoft Research. It

can be downloaded from

http://research.microsoft.com/users/tyliu/LETOR/.

Table 4. Data Partitioning for 5-fold Cross Validation

Folds Training set Validation set Test set

Fold1 {S1, S2, S3} S4 S5

Fold2 {S2, S3, S4} S5 S1

Fold3 {S3, S4, S5} S1 S2

Fold4 {S4, S5, S1} S2 S3

Fold5 {S5, S1, S2} S3 S4

4. BASELINE EXPERIMENTAL RESULTS

4.1 Ranking Algorithms

4.1.1 Ranking SVM

Many previous studies have shown that Ranking SVM [16] [20] is 

an effective algorithm for ranking. Ranking SVM generalizes 

SVM to solve the problem of ranking: while traditional SVM 

works on documents, Ranking SVM adopts partial-order 

preference for document pairs as its constraints. The optimization 

formulation of Ranking SVM is as follows:

min 
1

2
343 + * 56" ,- ,!

" ,- ,!
,

7. 8.∀:#" ,#- ; ∈ <!∗: >?(!,#") ≥ >?:!,#- ; + 1 − 6" ,- ,! .

When running Ranking SVM on the LETOR dataset, we use its 

linear version.

4.1.2 RankBoost

Freund, Y. et al [11] adopt the Boosting approach and propose the 

RankBoost algorithm to learn the ranking function. Similar to 

Ranking SVM, RankBoost operates on document pairs. Like all 

boosting algorithms, RankBoost trains one weak learner at each 

round of iteration, and combines these weak learners as the final 

ranking function. After each round, the document pairs are re-

weighted: it decreases the weight of correctly ranked pairs and 

increases the weight of wrongly ranked pairs. The detailed 

algorithm is shown in Figure 1. 

When running RankBoost on the LETOR dataset we define each 

weak learner on the basis of a feature. With a proper threshold, the 

weak learner has binary output, i.e., it takes values from {0, 1}.

Algorithm: RankBoost

Given: initial weight D over X×X

Initialize: D1=D

For t=1,…, T:

(a) Train weak learner using weight Dt.

(b) Get week ranking ht: X à R.

(c) Choose 
t Ra Î .

(d) Update weight by

( )0 1 0 1

1 0 1

( , )exp ( ( ) ( ))
( , )

t t t t

t

t

D x x h x h x
D x x

Z

a
+

-
=

where ( )
0 1

0 1 0 1

,

( , )exp ( ( ) ( ))t t t t t

x x

Z D x x h x h xa= -å .

Output the final ranking function:
1

( ) ( )
T

t t

t

H x h xa
=

=å

Figure 1. The RankBoost algorithm

4.2 Evaluation Measures

For evaluation, we use precision at position n, mean average 

precision, and normalized discount cumulative gain as the 

measures. These measures are widely used in information 

retrieval. Their definitions are as follows.

4.2.1 Precision at position n (P@n)

Precision at n measures the relevance of the top n documents in 

the ranking result with respect to a given query:

�@ =
# !"#"$% & '()* +  &(,   !"*-#&*

 .

For example, if the top 10 documents returned for a query are 

{relevant, irrelevant, irrelevant, relevant, relevant, relevant, 

irrelevant, irrelevant, relevant, relevant}, then P@1 to P@10 

values will be {1, 1/2, 1/3, 2/4, 3/5, 4/6, 4/7, 4/8, 5/9, 6/10} 

respectively. For a set of queries, we average the P@n values of 

all the queries to get the mean P@n value. Since P@n asks for 

binary judgments while there are three levels of relevance 

judgments in the OHSUMED collection, we simply regard 

“definitely relevant” as relevant and the other two levels as 

irrelevant when computing P@n.

4.2.2 Mean average precision (MAP)

For a single query, average precision is defined as the average of 

the P@n values for all relevant documents:

.� =
∑ (�@ ∗ !"#( ))1 =1

#&(&%# !"#"$% & '()* 2(! &ℎ+* 4-"!5,
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where N is the number of retrieved documents, and rel(n) is a 

binary function on the relevance of the n-th document:

!"#( ) = 81, +2 &ℎ"  &ℎ  '() +* !"#"$% &
0, (&ℎ"!9+*" .�

Similar to mean P@n, over a set of queries, we get MAP by 

averaging the AP values of all the queries. 

4.2.3 Normalized discount cumulative gain (NDCG)

Note that P@n and MAP can only handle cases with binary 

judgment: “relevant” or “irrelevant”. Recently, a new evaluation 

measure called Normalized Discount Cumulative Gain (NDCG)

[18] [19] has been proposed, which can handle multiple levels of 

relevance judgments. While evaluating a ranking list, NDCG 

follows two rules:

1) Highly relevant documents are more valuable than 

marginally relevant document;

2) The lower ranking position a document (of any relevance

level) has, the less valuable it is for the user, because it is less 

likely to be examined by the user.

According to the above rules, the NDCG value of a ranking list at 

position n is calculated as follow:

1( ) ≡ < = 2!(> ) − 1

log(1 + >)
 

>=1
,

where !(>) is the rating of the j-th document in the ranking list, 

and the normalization constant <  is chosen so that the perfect list 

gets a NDCG score of 1. In the above equation, we can see that 

2!(> ) − 1 is the gain (G) of the j-th document, 
2!(> )−1

log (1+> )
is the 

discounted gain (DG), ∑ 2!(> )−1

log (1+> )

 >=1 is the discounted cumulative 

gain (DCG) at position n of the list, and finally < ∑ 2!(> )−1

log (1+> )

 >=1 is

the normalized discounted cumulative gain (NDCG) at position n

of the list, which is called NDCG@n.

Note that in order to calculate NDCG scores, we need to define 

the ratings of each document. For the TD2003 and TD2004 

subsets, we define two ratings {0, 1} corresponding to “irrelevant”

and “relevant”; and for the OHSUMED subset, we define three 

ratings {0, 1, 2}, corresponding to “not relevant”, “partially

relevant”, and “definitely relevant” respectively.

4.3 Experimental Results

4.3.1 The OHSUMED subset

We list the ranking performances of Ranking SVM and 

RankBoost on the OHSUMED subset in Table 5.

From Table 5, we can see that Ranking SVM and RankBoost 

perform similarly on the OHSUMED subset. In more details, 

Ranking SVM performs as well as RankBoost in term of mean 

average precision, while for NDCG, RankBoost is better than 

Ranking SVM for NDCG@1 to NDCG@4, and worse for the 

remaining NDCG values.

Note that traditional IR models such as BM25 are within our 

features set. If we compare the performance of Ranking SVM and 

RankBoost with that of BM25 (which P@1 is 0.519, NDCG@1 is 

0.399, and MAP is 0.425 is for the OHSUMED subset), we can 

find that by combining BM25 with other features, the learning to 

rank algorithms can significantly outperform the single feature of 

BM25. This validates the value of adopting the learning to rank 

approach to information retrieval.

Table 5. Ranking Performance of Ranking SVM and 

RankBoost for OHSUMED

(a) Precision at position n

Algorithms P@1 P@2 P@3 P@4 P@5

RankBoost 0.605 0.595 0.586 0.562 0.545

Ranking SVM 0.634 0.619 0.592 0.579 0.577

Algorithms P@6 P@7 P@8 P@9 P@10

RankBoost 0.525 0.516 0.505 0.494 0.495

Ranking SVM 0.558 0.536 0.525 0.517 0.507

(b) Mean average precision

Algorithms MAP

RankBoost 0.440

Ranking SVM 0.447

(c) NDCG at position n

Algorithms NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5

RankBoost 0.498 0.483 0.473 0.461 0.450

Ranking SVM 0.495 0.476 0.465 0.459 0.458

Algorithms NDCG@6 NDCG@7 NDCG@8 NDCG@9 NDCG@10

RankBoost 0.442 0.439 0.436 0.433 0.436

Ranking SVM 0.455 0.447 0.445 0.443 0.441

Table 6. Ranking Performance of Ranking SVM and 

RankBoost for TD2003

(a) Precision at position n

Algorithms P@1 P@2 P@3 P@4 P@5

RankBoost 0.260 0.270 0.240 0.230 0.220

Ranking SVM 0.420 0.350 0.340 0.300 0.264

Algorithms P@6 P@7 P@8 P@9 P@10

RankBoost 0.210 0.211 0.193 0.182 0.178

Ranking SVM 0.243 0.234 0.233 0.218 0.206

(b) Mean average precision

Algorithms MAP

RankBoost 0.212

Ranking SVM 0.256

(c) NDCG at position n

Algorithms NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5

RankBoost 0.260 0.280 0.270 0.272 0.279

Ranking SVM 0.420 0.370 0.379 0.363 0.347

Algorithms NDCG@6 NDCG@7 NDCG@8 NDCG@9 NDCG@10

RankBoost 0.280 0.287 0.282 0.282 0.285

Ranking SVM 0.341 0.340 0.345 0.342 0.341
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Table 7. Ranking Performance of Ranking SVM and 

RankBoost for TD2004

(a) Precision at position n

Algorithms P@1 P@2 P@3 P@4 P@5

RankBoost 0.480 0.447 0.404 0.347 0.323

Ranking SVM 0.440 0.407 0.351 0.327 0.291

Algorithms P@6 P@7 P@8 P@9 P@10

RankBoost 0.304 0.293 0.277 0.262 0.253

Ranking SVM 0.273 0.261 0.247 0.236 0.225

(b) Mean average precision

Algorithms MAP

RankBoost 0.383514

Ranking SVM 0.350459

(c) NDCG at position n

Algorithms NDCG@1 NDCG@2 NDCG@3 NDCG@4 NDCG@5

RankBoost 0.480 0.473 0.464 0.439 0.437

Ranking SVM 0.440 0.433 0.409 0.406 0.393
(d) 

Algorithms NDCG@6 NDCG@7 NDCG@8 NDCG@9 NDCG@10

RankBoost 0.448 0.457 0.461 0.464 0.472

Ranking SVM 0.397 0.406 0.410 0.414 0.420

4.3.2 The TD 2003 subset 

We list the ranking performance of Ranking SVM and RankBoost 

on the TD2003 subset in Table 6. From Table 6, we can see that 

Ranking SVM is better than RankBoost with all measures for 

TD2003. Take NDCG for example, Ranking SVM outperforms 

RankBoost by 0.15 (or 60% relatively) for NDCG@1, and more 

than 0.05 (or relatively 20%) for other NDCG values.

Also we can get the similar conclusion to that for the OHSUMED 

subset on the comparison between traditional ranking models and 

learning to rank methods. This time, for the TD2003 subset, the 

performance of BM25 is shown as follows: 0.12 for NDCG@1, 

0.12 for P@1, and 0.126 for MAP. It is clear by combining more 

features, Ranking SVM and RankBoost can significantly 

outperform BM25.

4.3.3 The TD 2004 subset 

The ranking performance of Ranking SVM and RankBoost on the 

TD2003 subset is shown in Table 7. From Table 7, we can see 

that RankBoost is slightly better than Ranking SVM for TD2004

in terms of all measure. And these two methods both outperform 

BM25 significantly. For the TD2004 subset, the performance of 

BM25 is as follows: 0.307 for NDCG@1, 0.307 for P@1, and

0.282 for MAP. 

Overall speaking, the performance of Ranking SVM seems to be 

more stable than RankBoost and can outperform RankBoost in 

more cases. This on one hand shows that the large-margin nature 

of Ranking SVM really performs well on the ranking task. And on 

the other hand, this shows that the ranking task in the LETOR 

dataset is not so complex that linear models such as Ranking 

SVM have already done a good job, if the combination 

coefficients are carefully set. And the non-linear model of 

RankBoost does not necessarily lead to better performances.

5. FUTURE RESEARCH DIRECTIONS

So far, we have explained Ranking SVM and RankBoost, and 

shown the experimental results of them on the LETOR dataset. 

There are still many open problems with regard to learning to rank 

and one can study the issues using LETOR. We list several 

possible research topics here.

1) Feature selection for ranking

It is obvious that the features we extracted are not equally 

effective. Thus, the LETOR dataset can be used to study 

different methods for features selection. To our knowledge, 

the work on feature selection for ranking is still an unsolved 

problem [1] and needs more investigations.

2) Loss functions for ranking

The state-of-the-arts algorithms for learning to rank extend 

existing classification techniques to solve the ranking 

problem. However, considering the difference between 

ranking and classification (e.g. the difference in evaluation 

measures), one would conjecture that employing a new

approach completely suitable for ranking is necessary. For 

example, it would be sensible to define novel loss functions 

that can better meet the evaluation requirements in IR,

particularly, to introduce loss functions at query level. 

3) Ranking models

In this paper, we only tested the cases of using linear model 

and additive model as ranking models. It would be

interesting to look how other ranking models work. For 

example, we may ask whether it is possible to define a 

ranking model that can exploit the inter-relationship between 

documents in IR ranking. 

4) Query-based ranking

Ranking SVM, RankBoost, and all the other existing models 

are query independent models. However, from the IR point 

of view, it seems better to employ query-dependent models.

It would be interesting to see whether it is possible to 

partition the query space, and train different ranking models 

for different subspaces (different types of queries).

Certainly, besides the aforementioned four directions, there are 

still many problems one can explore with the LETOR data. 

6. CONCLUSIONS
Research on machine learning is heavily affected by the 

availability of data, and this is also true for learning to rank for 

information retrieval. We believe that the LETOR dataset 

described in this paper has the potential to support future research 

on the area. On May 8, 2007, the LETOR dataset was released

from Microsoft Research Asia. Up to the time this paper is written, 

there has been more than 250 downloads of this dataset, indicating 

that the need for such kind of data is really high.

We hope that by explaining the data creation process and 

providing the results of the state-of-the-arts algorithms in this 

paper, we can help people to better understand the nature of the 

dataset and to more effectively utilize the dataset in their research 

work. Finally, we hope that more datasets can be created and 
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shared out from different groups after LETOR, and learning to 

rank for information retrieval can be significantly advanced.
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