

Efficient Neural Machine Translation

Tao Qin Senior Research Manager Microsoft Research Asia <u>http://research.Microsoft.com/~taoqin</u>

Why Machine Translation?

https://nimdzi.com/wp-content/uploads/2018/03/2018-Nimdzi-100-First-Edition.pdf

Why Machine Translation?

- \cdot A very challenging AI task and hot research area
 - Popular in NLP conferences, e.g., ACL, EMNLP, NAACL, ...
 - Popular in ML conferences, e.g., NIPS, ICML, ICLR, ...
 - · Popular in Al conferences, e.g., IJCAI, AAAI, ...
- \cdot Dedicated conferences for MT
 - · 17th Machine Translation Summit
 - · 3rd Conference on Machine Translation (WMT18)

Credit: Christopher Manning

Encoder-Decoder for sequence generation

e=(Economic, growth, has, slowed, down, in, recent, years,.)

Encoder-Decoder for Machine Translation

Sutskever et al., NIPS, 2014

Encoder-Decoder with Attention

Bahdanau et al., ICLR, 2015

Encoder-Decoder with Attention

Bahdanau et al., ICLR, 2015

Three Pillars of Deep Learning

 Big data: web pages, search logs, social networks, and new mechanisms for data collection: conversation and crowdsourcing

• Big models: 1000+ layers, tens of billions of parameters

• Big computing: CPU clusters, GPU clusters, and others, provided by Azure, etc.

Outline

- · Data efficiency: dual learning
 - How to efficiently learn from unlabeled data (NIPS 2016)
 - How to efficiently learn from labeled data (ICML 2017)
 - Multi-agent dual learning (ongoing)
- Efficient inference: non-autoregressive machine translation
 - Non-autoregressive MT with enhanced inputs (AAAI 2019)
 - Non-autoregressive MT with teacher regularization (AAAI 2019)

Big-Data Challenge

 Today's deep learning highly relies on huge amount of human-labeled training data

Tasks	Typical training data
Image classification	Millions of labeled images
Speech recognition	Thousands of hours of annotated voice data
Machine translation	Tens of millions of bilingual sentence pairs

Human labeling is in general very expensive, and it is hard, if not impossible, to obtain large-scale labeled data for rare

Cost Estimation for Machine Translation

□ 7000 different languages that are spoken around the world □ The 100-th largest language has over 7 million native speakers $\frac{100 \times 99}{2} \times \$22.5M \approx \$113B$ Number of language pairs for top 100 languages

Part 1: Improve data efficiency through dual learning

The Beauty of Symmetry

• Symmetry is almost everywhere in our world!

Structural Duality in Al

Structural duality is very common in artificial intelligence

AI Tasks	$X \rightarrow Y$	$\mathbf{Y} \rightarrow \mathbf{X}$
Machine translation	Translation from English to Chinese	Translation from Chinese to English
Speech processing	Speech recognition	Text to speech
Image understanding	Image captioning	Image generation
Conversation	Question answering	Question generation
Search engine	Query-document matching	Query/keyword suggestion
	Primal Task	Dual Task

Currently most machine learning algorithms do not exploit structure duality for training and inference.

Dual Learning

- A new learning framework that leverages the primal-dual structure of AI tasks to obtain effective feedback or regularization signals to enhance the learning/inference process.
- Algorithms
 - Dual unsupervised learning (NIPS 2016)
 - Dual supervised learning (ICML 2017)
 - Multi-agent dual learning (ongoing work)

If you don't have enough labeled data for training, Dual Unsupervised Learning

can leverage structural duality to learn from unlabeled data

NIPS 2016

Dual Unsupervised Learning

En->Ch translation

Reinforcement Learning algorithms can be used to improve both primal and dual models according to feedback signals

Experimental Setting

- Baseline: Neural Machine Translation (NMT)
 - One-layer RNN model, trained using 100% bilingual data (10M)
 - Neural Machine Translation by Jointly Learning to Align and Translate, by Bengio's group (ICLR 2015)
- Our algorithm:
 - Step 1: Initialization

Starting from initial models obtained from only 10% bilingual data, dual learning can achieve similar accuracy as the NMT model learned from 100% bilingual data!

update the dual models based on monolingual data	NMT with 10%	Dual learning with	NMT with 100%
monombaar aata	bilingual data	10% bilingual data	bilingual data

Comparison

Unsupervised/semi-supervised learning: no feedback signals for unlabeled data, only one task.

Co-training: one task, assuming different feature sets that provide complementary information about the instance .

Multi-task learning: multiple tasks share the same representation.

Transfer learning: use auxiliary tasks to boost the target task.

Dual learning: automatically generate reinforcement feedback for unlabeled data, multiple tasks involved.

Dual learning: multiple tasks involved, no assumption on feature set.

Dual learning: dual tasks don't need to share representations, only if the loop is closed.

Dual learning: all the tasks are mutually and simultaneously boosted.

Probabilistic View of Structural Duality

• The structural duality implies strong probabilistic connections between the models of dual AI tasks.

$$P(x,y) = P(x)P(y|x;f) = P(y)P(x|y;g)$$

Primal View

Dual View

- This can be used beyond unsupervised learning
 - Structural regularizer to enhance supervised learning
 - Additional criterion to improve inference

If you don't have additional unlabeled data for training, Dual Supervised Learning

can learn from labeled data more effectively

ICML 2017

Dual Supervised Learning

Feedback signals during the loop:

• R(x, f, g) = |P(x)P(y|x; f) - P(y)P(x|y; g)|: the gap between the joint probability P(x, y) obtained in two directions

Theoretical Analysis

• Dual supervised learning generalizes better than standard supervised learning

Theorem 1 ((Mohri et al., 2012)). Let $\ell_1(f(x), y) + \ell_2(g(y), x)$ be a mapping from $\mathcal{X} \times \mathcal{Y}$ to [0, 1]. Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$, the following inequality holds for any $(f, g) \in \mathcal{H}_{dual}$, $R(f, g) \leq R_n(f, g) + 2\mathfrak{R}_n^{DSL} + \sqrt{\frac{1}{2n} \ln(\frac{1}{\delta})}.$ (7)

$$\longrightarrow \mathcal{H}_{\text{dual}} \text{ as } (\mathcal{F} \times \mathcal{G}) \cap \mathcal{D}$$

The product space of the two models satisfying probabilistic duality: P(x)P(y|x; f) = P(y)P(x|y; g) //newstest2017

Human Parity In Machine Translation

AI score: 69.5Human score: 69.0Dual learningDeliberation learning

@2018.3

Microsoft reaches a historic milestone, using Al to match human performance in translating news from Chinese to English

March 14, 2018 | Allison Linn

微软人工智能又一里程石 微软中-英机器翻译水平 可"与人类媲美"

四大技术为创新加持>

Multi-agent Dual Learning

Ongoing work

Refresh of Dual Learning

Motivation

Employing multiple agents can improve evaluation qualities: *Multi-Agent Dual Learning*

Train and update f_0 and g_0

Framework

A Computation-Efficient Solution

- It is too cost to load 2N models into GPU memory
- An off-policy way:

• Given an
$$x$$
, $\hat{y} \sim \frac{1}{N-1} \sum_{i=1}^{N-1} f_i(x)$; Given a $y, \hat{x} \sim \frac{1}{N_i-1} \sum_{j=1}^{N-1} g_j$
• Calculate $P_{x \to \hat{y}} = \frac{1}{N-1} \sum_{i=1}^{N-1} P(\hat{y}|x; f_i)$, $P_{y \to \hat{x}} = \frac{1}{N-1} \sum_{j=1}^{N-1} P(\hat{x}|y; g_j)$
 $A_{\hat{y} \to x} = \sum_{j=1}^{N-1} P(x|\hat{y}; g_j)$, $A_{\hat{x} \to y} = \sum_{i=1}^{N-1} P(y|\hat{x}; f_i)$
• $f_0 = f_0 - \eta \nabla_{f_0} \left[\frac{(N-1)P_{x \to \hat{y}} + P(\hat{y}|x; f_0)}{NP_{x \to \hat{y}}} \log \left(\frac{A_{\hat{y} \to x} + P(x|\hat{y}; g_0)}{N} \right) + \frac{(N-1)P_{y \to \hat{x}} + P(\hat{x}|y; g_0)}{NP_{y \to \hat{x}}} \log \left(\frac{A_{\hat{x} \to y} + P(y|x; f_0)}{N} \right) \right]$

- Similar for g_0
- The GPU only needs to load 2 models only
 - If we focus on one-direction translation, only 1 model needs to be loaded

IWSLT 2014 (<200k bilingual data)

WMT 2014 (4.5M bilingual data)

• On Bench-mark dataset WMT 2014,

State-of-the-art results with WMT2014 data only

WMT 2016 Unsupervised NMT (*0 bilingual data*)

WMT En->De 2016~2018

+Transformer-LM	39.6	31.9	48.3
+R2L Reranking (x4)	39.3	31.7	48.0
+Ensemble (x4)	39.3	31.6	47.9
Transformer-big (x1)	38.6	31.3	46.5
System	2016	2017	2018*

	2016	2017	2018
Facebook's model (single)	37.04 ± 0.16	31.86 ± 0.21	44.63 ± 0.12
Facebook's model (ensemble)	37.99	32.80	46.05
Multi-Agent Dual (Single)	40.71 ± 0.08	33.47 ± 0.15	48.97 ± 0.06
Multi-Agent Dual (Ensemble)	41.19	34.12	49.77

Summary of Data Efficiency

Dual unsupervised learning	Improve the efficiency of unlabeled dataAlso works for semi-supervised learning
Dual supervised learning	Improve the efficiency of labeled dataFocus on probabilistic connection of structure duality
Multi-agent dual learning	 Ensemble of multiple primal and dual models to improve data efficiency Works for both labeled and unlabeled data

More on Dual Learning

- DualGAN for image translation (ICCV2017)
- Dual face manipulation (CVPR 2017)
- Semantic image segmentation (CVPR 2017)
- Question generation/answering (EMNLP 2017)
- Image captioning (CIKM 2017)
- Dual transfer learning (AAAI 2018)
- Unsupervised machine translation (ICLR 2018/2018)

More on Dual Learning

- Model-level dual learning (ICML 2018)
- Conditional image translation (CVPR 2018)
- Visual question generation/answering (CVPR 2018)
- Face aging/rejuvenation (IJCAI 2018)
- Safe Semi-Supervised Learning (ACESS 2018)
- Image rain removal (BMVC 2018)

• ...

More on Dual Learning

- Basic idea: leverage structure duality for machine learning
- Works for different learning settings
 - Unsupervised learning, supervised learning, transfer learning, inference, ...
- Applied to many applications
 - Machine translation, question answering/generation, ...
 - Image classification/generation, sentiment classification/generation, ...
 - Image translation, face manipulation, ...

Part 2: Improve inference efficiency with nonautoregressive translation models

Background

Neural machine translation models are usually based on autoregressive factorization

$$P(y|x) = P(y_1|x) \times P(y_2|y_1, x)$$

$$\times \cdots \times P(y_T|y_1, \dots, y_{t-1}, x)$$

Inference latency bottleneck

• Parallelizable Training v.s. Non-parallelizable Inference

Non-autoregressive NMT

Use a deep neural network to predict target length

Use a deep neural network to copy source embedding to target embedding

Generate target tokens in parallel

Non-autoregressive NMT (NART v.s. ART)

Non-autoregressive Translation Model with Enhanced Decoder Inputs

AAAI 2019

Motivation

Autoregressive models take target words as decoder inputs Non-autoregressive models take source words as decoder inputs

Our Proposal: the Hard Model

Leverage a phrase table to translate source words to target words

If given a large bilingual corpus, we can train a good phrase transition table using SMT

Our Proposal: the Soft Model

Linearly transform source word embeddings to target word embeddings

Results

	WMT14		WMT16 IWSLT14			
Models	En–De	De-En	En-Ro	De-En	Latency /	Speedup
LSTM-based S2S	24.60	/	/	28.53	/	/
Transformer Teacher	27.41^{\dagger}	31.29^{\dagger}	35.61^\dagger	32.55^\dagger	607 ms	$1.00 \times$
LT	19.80	/	/	/	105 ms	$5.78 \times$
LT (rescoring 10 candidates)	21.00	/	/	/	/	/
LT (rescoring 100 candidates)	22.50	/	/	/	/	/
NART	17.69	21.47	27.29	22.95^\dagger	39 ms	$15.6 \times$
NART (rescoring 10 candidates)	18.66	22.41	29.02	25.05^\dagger	79 ms	7.68 imes
NART (rescoring 100 candidates)	19.17	23.20	29.79	1	257 ms	$2.36 \times$
Phrase-to-Phrase	6.03	11.24	9.16	15.69	/	/
ENAT Hard	20.26	23.23	29.85	25.09	25 ms	$24.3 \times$
ENAT Hard (rescoring 9 candidates)	23.22	26.45	34.04	28.60	50 ms	$12.1 \times$
ENAT Soft	20.65	23.02	30.08	24.13	24 ms	25.3 ×
ENAT Soft (rescoring 9 candidates)	24.19	26.10	34.13	27.30	49 ms	$12.4 \times$

Non-autoregressive Translation Model with Auxiliary Regularization

AAAI 2019

Motivation Example

Source	vor einem jahr oder so , las ich eine studie , die mich wirklich richtig umgehauen hat .
Target	i read a study a year or so ago that really blew my mind wide open .
Transforme r	one year ago , or so , i read a study that really blew me up properly .
NART	so a year , , i was to a a a year or , read that really really really me me me .

• Incomplete Translation

Our Solution

Results

Models/Detesats	WMT14	WMT14	IWSLT14	IWSLT16	Latanar	Speedup
Widdels/Datasets	En-De	De-En	De-En	En-De	Latency	speedup
Autoregressive Models (AT Teachers)						
Transformer (NAT-FT, (Gu et al. 2018))	23.45	27.02	31.47^{\dagger}	29.70	_	-
Transformer (NAT-IR, (Lee, Mansimov, and Cho 2018))	24.57	28.47	30.90^{\dagger}	28.98	-	_
Transformer (LT, (Kaiser et al. 2018))	27.3	/	/	/	-	-
Transformer (NAT-REG)	27.3	31.29	33.52	28.35	607 ms	1.00 imes
Transformer (NAT-REG, Weakened Teacher)	24.50	28.76	/	/	_	-
Non-Autoregressive Models		•				
NAT-FT (no NPD)	17.69	21.47	20.32^{\dagger}	26.52	39 ms	$15.6 \times$
NAT-FT (NPD rescoring 10)	18.66	22.41	21.39^{\dagger}	27.44	79 ms	7.68 imes
NAT-FT (NPD rescoring 100)	19.17	23.20	24.21^{\dagger}	28.16	257 ms	2.36 imes
NAT-IR (1 refinement)	13.91	16.77	21.86^{\dagger}	22.20	68 [†] ms	8.9 imes
NAT-IR (10 refinements)	21.61	25.48	23.94^{\dagger}	27.11	404 [†] ms	1.5 imes
NAT-IR (adaptive refinements)	21.54	25.43	24.63^{\dagger}	27.01	320^{\dagger} ms	1.9 imes
LT (no rescoring)	19.8	/	/	/	105 ms	$5.78 \times$
LT (rescoring 10)	21.0	/	/	/	/	/
LT (rescoring 100)	22.5	/	/	/	/	/
NAT-REG (no rescoring)	20.79	24.77	24.11	23.14	16 ms	$37.9 \times$
NAT-REG (rescoring 9)	24.87	29.04	28.14	27.02	33 ms	$18.3 \times$

Summary of Efficient Inference

Hard word Translation	 Use a phrase translation table to enhance the decoder input
Soft embedding mapping	 Linearly transform source word embeddings to target word embeddings to enhance the decoder input
Similarity regularization	 Regularize the hidden states of the NART model to avoid repeated translations
Back-translation regularization	 Handle incomplete translations through back- translation

References and Acknowledgements

All our works are conducted on NVIDIA GPUs.

- Di He, Yingce Xia, Tao Qin, Tie-Yan Liu, and Wei-Ying Ma, Dual Learning for Machine Translation, NIPS 2016
- Yingce Xia, Tao Qin, Wei Chen, Tie-Yan Liu, Dual Supervised Learning, ICML 2017
- Yiren Wang, Fei Tian, Di He, Tao Qin, Chengxiang Zhai, Tie-Yan Liu, Non-Autoregressive Machine Translation with Auxiliary Regularization, AAAI 2019
- Junliang Guo, Xu Tan, Di He, Tao Qin, Tie-Yan Liu, Non-Autoregressive Neural Machine Translation with Enhanced Decoder Input, AAAI 2019
- Multi-agent dual learning, ongoing

We're hiring!

If you are passionate about research, especially deep learning and reinforcement learning, welcome to join us!!

Contact: <u>taoqin@Microsoft.com</u> <u>http://research.Microsoft.com/~taoqin</u>