

Dual Learning: Algorithms and Applications

Tao Qin Senior Research Manager Microsoft Research Asia

Outline

- 1. Motivation and basic concept
- 2. Dual learning from unlabeled data
- 3. Dual learning from labeled data
- 4. More applications
- 5. Summary and outlook

Deep learning is making breakthroughs

COMPUTER VISION

Revolution of Depth

ImageNet Classification top-5 error (%)

28.2

IM GENET

SPEECH

SPEECH-RECOGNITION WORD-ERROR RATE, SELECTED BENCHMARKS, %

Sources: Microsoft: research papers

NATURAL LANGUAGE

Microsoft Translator a

🖳 💾 Conversa

=-

GeekWire

Q

InfoQ

En

Break the language barrier

Translated conversations across devices, for one-on-one chats and for larger group interactions.

Microsoft and Alibaba Al programs beat humans in Stanford reading comprehension test for 1st time

BY NAT LEVY on January 15, 2018 at 2:57 pm

BOT or NOT? This special

f

series explores the evolving

alationahin hatwaan humana

in

 \times

Microsoft Achieves Human Parity on Chinese-English Machine Translation

🖬 Like

by Roland Meertens on Mar 15, 2018 Estimated reading time: 2 minutes This item in chinese 🎽

Add to reading list View my 00 reading list

Three Pillars of Deep Learning

 Big data: web pages, search logs, social networks, and new mechanisms for data collection: conversation and crowdsourcing

• Big models: 1000+ layers, tens of billions of parameters

 Big computing: CPU clusters, GPU clusters, FPGA farms, provided by Amazon, Azure, Ali etc.

Deep learning is facing many challenges

Big-Data Challenge

• Today's deep learning highly relies on huge amount of human-labeled training data

Tasks	Typical training data
Image classification	Millions of labeled images
Speech recognition	Thousands of hours of annotated voice data
Machine translation	Tens of millions of bilingual sentence pairs

Human labeling is in general very expensive, and it is hard, if not impossible, to obtain large-scale labeled data for rare domains.

Cost Estimation for Machine Translation

7000 different languages that are spoken around the world
 The 100-th largest language has over 7 million native speakers

$$\frac{100 \times 99}{2} \times \$22.5M \approx \$113B$$
Number of language pairs for top 100 languages

Our proposal: Dual Learning

The Beauty of Symmetry

• Symmetry is almost everywhere in our world!

Duality in Machine Translation

English->Chinese translation

Duality in Speech Processing

Duality in Image Processing

Duality in Question Answering and Generation

Question answering

Primal Task $f: x \rightarrow y$

for what purpose do organisms make peroxide and superoxide ? Parts of the immune system of higher organisms create peroxide , superoxide , and singlet oxygen to destroy invading microbes .

Dual Task $g: y \to x$

Question generation

Duality in Search and Advertising

Structural Duality in Al

• Structural duality is very common in artificial intelligence

AI Tasks	$x \rightarrow y$	$\mathbf{v} \rightarrow \mathbf{x}$
Machine translation	Translation from language EN to CH	Translation from language CH to EN
Speech processing	Speech recognition	Text to speech
Image understanding	Image captioning	Image generation
Conversation	Question answering	Question generation (e.g., Jeopardy!)
Search engine	Query-document matching	Query/keyword suggestion

Currently most machine learning algorithms do not exploit structure duality for training and inference.

Dual Learning

• A new learning framework that leverages the symmetric (primal-dual) structure of AI tasks to obtain effective feedback or regularization signals to enhance the learning/inference process.

Dual Learning from Unlabeled Data

- Algorithms for machine translation
 - Dual unsupervised learning
 - Dual transfer learning
 - Unsupervised machine translation
- Algorithms for image translation
 - DualGAN, CycleGAN, DiscoGAN
 - Conditional image translation

Why Machine Translation?

Nimdzi-100-First-Edition.pdf

Why Machine Translation?

- Perfectly fits into the setting of dual learning
 - There is no information loss in X->Y and Y->X mapping
- A very challenging AI task and a hot research direction
 - in NLP conferences, e.g., ACL, EMNLP, NAACL, ...
 - in ML conferences, e.g., NIPS, ICML, ICLR, ...
 - in Al conferences, e.g., IJCAI, AAAI, ...
- Dedicated conferences for MT
 - 17th Machine Translation Summit
 - 3rd Conference on Machine Translation (WMT18)

Neural Machine Translation

Encoder-Decoder for sequence generation

e=(Economic, growth, has, slowed, down, in, recent, years,.)

Encoder-Decoder for machine translation

Sutskever et al., NIPS, 2014

Attention based Encoder-Decoder

Bahdanau et al., ICLR, 2015

Attention based Encoder-Decoder

Bahdanau et al., ICLR, 2015

If you don't have enough labeled data for training, Dual Unsupervised Learning

can leverage structural duality to learn from unlabeled data

NIPS 2016

Dual Unsupervised Learning

En->Ch translation

Dual Task $g: y \to x$

Reinforcement Learning algorithms can be used to improve both primal and dual models according to feedback signals

Learning with Policy Gradient

- Basic idea
 - If a large reward is observed for an action, update the policy (e.g., models f, g) towards increasing the probability of the action; otherwise, update the policy towards decreasing the probability of the action
- Algorithm
 - Compute the gradient Δf , Δg of the two models f and g.
 - If the feedback is positive, e.g., s(x, x'), L(x'), and L(y) are larger than certain thresholds, update the models as $f = f + \alpha \Delta f$, $g = g + \alpha \Delta g$
 - If the feedback is negative, e.g., s(x, x'), L(x'), and L(y) are smaller than certain thresholds, update the models as $f = f \alpha \Delta f$, $g = g \alpha \Delta g$

Experiment

- Machine translation as a first playground
 - Translation between English <--> France
 - Benchmarked aligned data set
 - Benchmarked monolingual data set
- Baseline algorithm :
 - LSTM based neural machine translation model (NMT), ICLR 2015, "Neural Machine Translation by Jointly Learning to Align and Translate", from Y. Bengio's group

Experimental

- Our algorithm
 - Step 1: Warm start models
 - 5-day trained nmt model with 10% training data

- Step 2: Self-play with monolingual data from the warm start model using reinforcement learning
 - We use policy gradient algorithm in reinforcement learning, and continue training for 2 days.

Experimental Results

BLEU score: French->English

Starting from initial models obtained from only 10% bilingual data, dual learning can achieve similar accuracy as the NMT model learned from 100% bilingual data!

bilingual data 10% bilingual data bilingual data

Extension to Multiple Associated Tasks

• The idea of dual learning can be extended to more than two associated tasks, as long as they can provide informative feedback signals from a closed loop.

Comparison

Unsupervised/semi-supervised learning: no feedback signals for unlabeled data, only one task.

Co-training: only one task, assuming different feature sets that provide complementary information about the instance .

Multi-task learning: multiple tasks share the same representation.

Transfer learning: use auxiliary tasks to boost the target task.

Dual learning: automatically generate reinforcement feedback for unlabeled data, multiple tasks involved.

Dual learning: multiple tasks involved, no assumption on feature set.

Dual learning: dual tasks don't need to share representations, only if the loop is closed.

Dual learning: all the tasks are mutually and simultaneously boosted.

Virtual Duality: GANs

If you have one well-trained model, Dual Transfer Learning

can leverage it and unlabeled data to improve the other model

AAAI 2018

Leverage Unlabeled Data

- Starting point: $P(y) = E_{x \sim P(x)} P(y|x; f)$
- Standard learning: for labeled data

$$\max_{f} \sum_{(x,y)\in\mathcal{L}} \log P(y|x;f)$$

• New objective: for unlabeled data

$$\min_{f} \sum_{y \in \varkappa} \left(P(y) - E_{x \sim P(x)} P(y|x;f) \right)^2$$

Tech Challenges

- How to efficiently compute $E_{x \sim P(x)} P(y|x; f)$?
 - Exponentially many possible *x*'s
 - Cannot enumerate all of them
- Sampling?
 - Naïve sampling does not work

$$E_{x \sim P(x)} P(y|x;f) = \sum_{x} P(y|x;f) P(x)$$

Our Solution

$$E_{x \sim P(x)} P(y|x;f) = \sum_{x} P(y|x;f) P(x)$$

= $\sum_{x} \frac{P(y|x;f) P(x)}{P(x|y;g)} P(x|y;g)$
= $E_{x \sim P(x|y;g)} \frac{P(y|x;f) P(x)}{P(x|y;g)}$
 $\approx \frac{1}{K} \sum_{i=1}^{K} \frac{P(y|x_i;f) P(x_i)}{P(x_i|y;g)}, \quad x_i \sim P(x|y;g)$

Use the dual model g for importance sampling

11/14/2018

Experimental Results

Unsupervised Machine Translation machine translation with zero labeled data

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho, ICLR 2018

Credit: Figures in this section come from the paper.

System Architecture

- Dual structure
 - E.g., French<->English
- Shared encoder
 - Only one encoder works for both French and English
- Fixed embeddings in the encoder
 - Pre-train cross-lingual word embeddings
 - Keep fixed during training

Unsupervised Training

- Autoencoder with selfreconstruction loss
 - X->Z->X
 - Y->Z->Y
- Dual translation with backreconstruction loss
 - X->Z->Y->Z->X
 - Y->Z->X->Z->Y

Unsupervised Training

- With attention model, it is easy to obtain a trivial autoencoder
 - Simple copy operation
- Denoising autoencoder
 - n(X)->Z->X
 - n(Y)->Z->Y
 - Making random swaps between contiguous words

Results

		FR-EN	EN-FR	DE-EN	EN-DE
Unsupervised	 Baseline (emb. nearest neighbor) Proposed (denoising) Proposed (+ backtranslation) Proposed (+ BPE) 	9.98 7.28 15.56 15.56	6.25 5.33 15.13 14.36	7.07 3.64 10.21 10.16	4.39 2.40 6.55 6.89
Semi- supervised	 5. Proposed (full) + 10k parallel 6. Proposed (full) + 100k parallel 	18.57 21.81	17.34 21.74	11.47 15.24	7.86 10.95
Supervised	7. Comparable NMT (10k parallel)8. Comparable NMT (100k parallel)9. Comparable NMT (full parallel)10. GNMT (Wu et al., 2016)	1.88 10.40 20.48	1.66 9.19 19.89 38.95	1.33 8.11 15.04	0.82 5.29 11.05 24.61

Unsupervised Neural Machine Translation Using Monolingual Corpora Only

Guillaume Lample, Alexis Conneau, Ludovic Denoyer, Marc'Aurelio Ranzato, ICLR 2018 Credit: Figures in this section come from the paper.

Key Ideas

Tao Qin - ACML 2018

Unsupervised Training

• Denoising autoencoder

$$\mathcal{L}_{auto}(\theta_{enc}, \theta_{dec}, \mathcal{Z}, \ell) = \mathbb{E}_{x \sim \mathcal{D}_{\ell}, \hat{x} \sim d(e(C(x), \ell), \ell)} \left[\Delta(\hat{x}, x) \right]$$

• Cross-domain dual translation

$$\mathcal{L}_{cd}(\theta_{enc}, \theta_{dec}, \mathcal{Z}, \ell_1, \ell_2) = \mathbb{E}_{x \sim \mathcal{D}_{\ell_1}, \hat{x} \sim d(e(C(M(x)), \ell_2), \ell_1)} \left[\Delta(\hat{x}, x) \right]$$

• Adversary training

$$\mathcal{L}_{adv}(\theta_{enc}, \mathcal{Z}|\theta_D) = -\mathbb{E}_{(x_i, \ell_i)}[\log p_D(\ell_j|e(x_i, \ell_i))]$$

Unsupervised Training

Final Total Objectives

$$\begin{aligned} \mathcal{L}(\theta_{\text{enc}}, \theta_{\text{dec}}, \mathcal{Z}) = &\lambda_{auto} [\mathcal{L}_{auto}(\theta_{\text{enc}}, \theta_{\text{dec}}, \mathcal{Z}, src) + \mathcal{L}_{auto}(\theta_{\text{enc}}, \theta_{\text{dec}}, \mathcal{Z}, tgt)] + \\ &\lambda_{cd} [\mathcal{L}_{cd}(\theta_{\text{enc}}, \theta_{\text{dec}}, \mathcal{Z}, src, tgt) + \mathcal{L}_{cd}(\theta_{\text{enc}}, \theta_{\text{dec}}, \mathcal{Z}, tgt, src)] + \\ &\lambda_{adv} \mathcal{L}_{adv}(\theta_{\text{enc}}, \mathcal{Z} | \theta_D) \end{aligned}$$

Results

	Multi30k-Task1			WMT				
	en-fr	fr-en	de-en	en-de	en-fr	fr-en	de-en	en-de
Supervised	56.83	50.77	38.38	35.16	27.97	26.13	25.61	21.33
word-by-word word reordering oracle word reordering	8.54 - 11.62	16.77 - 24.88	15.72 - 18.27	5.39 - 6.79	6.28 6.68 10.12	10.09 11.69 20.64	10.77 10.84 19.42	7.06 6.70 11.57
Our model: 1st iteration Our model: 2nd iteration Our model: 3rd iteration	27.48 31.72 32.76	28.07 30.49 32.07	23.69 24.73 26.26	19.32 21.16 22.74	12.10 14.42 15.05	11.79 13.49 14.31	11.10 13.25 13.33	8.86 9.75 9.64

Dual Learning from Unlabeled Data

- Algorithms for machine translation
 - Dual unsupervised learning
 - Dual transfer learning
 - Unsupervised machine translation
- Algorithms for image translation
 - DualGAN/CycleGAN/DiscoGAN
 - Face attribute manipulation
 - Face aging
 - Conditional image translation

Image-to-Image Translation

• *im2im* is to translate one image from source domain to target domain

- 1. http://funny.pho.to/day-to-night-effect/
- 2. https://turbo.deepart.io/

DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

Zili Yi, Hao Zhang, Ping Tan, Minglun Gong, ICCV 2017

Credit: Figures in this section come from the paper.

System Architecture

Input GT Tao Qin - A DuaiGAN GAN cGAN [4]

58

licrosoft

rosoft

Label → Facade

Photo -> Sketch

Input GTao Qin - ACMIDualGAN GAN

60

icrosoft

rosoft

Sketch → Photo

Input TaGT ACML 2018 DualGAN GAN CGAN [4]₆₁

Chinese paintings➔ oil paintings

Papers with the Same Idea

- Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, ICCV 2017
- Learning to Discover Cross-Domain Relations with Generative Adversarial Networks, ICML 2017

Input

Output

 $zebra \rightarrow horse$

Microsoft

Learning Residual Images for Face Attribute Manipulation

Wei Shen, Rujie Liu, CVPR 2017

Credit: Figures in this section come from the paper.

Face Attribute Manipulation

(a) Glasses: remove and add the glasses

(b) *Mouth_open*: close and open the mouth

(c) *No_beard*: add and remove the beard

Discriminator Loss

- Tranformation networks G_0 , G_1
- Discriminator network *D*
- Discriminator loss

Category label O: no glass 1: with glass 2: fake image

$$\ell_{cls}(t,p) = -\log(p_t), t = 0, 1, 2,$$

Glasses

Original images

VAE-GAN

This work

Residual image

Beard

Original images

VAE-GAN

This work

Residual image

11/14/2018

Tao Qin - ACML 2018

Mouth

Original images

This work 🦮

Smile

Original images

VAE-GAN

This work

Female - Male

Original images

VAE-GAN

This work

Young - Old

Original images

VAE-GAN

This work

Ablation Study

Original images

Result images

Without dual learning

Dual Conditional GANs for Face Aging and Rejuvenation

Jingkuan Song, Jingqiu Zhang, Lianli Gao, Xianglong Liu, Heng Tao Shen, IJCAI 2018 Credit: Figures in this section come from the paper.

Face Aging and Rejuvenation

System Architecture

Microsoft

11/14/2018

Conditional Image Translation

CVPR 2018

What exists/lacks in current im2im

- An assumption $\forall x_A \in \mathcal{D}_A$, $x_B \in \mathcal{D}_B$:
 - $x_A = x_A^i \oplus x_A^s$, $x_B = x_B^i \oplus x_B^s$
 - x_{\cdot}^{i} =domain independent features; x_{\cdot}^{s} =domain specific features
- Conventional *im2im* cannot specify domain specific features
 - Cannot control the style of generated images
 - Generate with random domain specific features
 - How to specify domain-specific features

From *im2im* to conditional *im2im*

- Input: $\forall x_A \in \mathcal{D}_A, x_B \in \mathcal{D}_B$: $x_A = x_A^i \bigoplus x_A^s, x_B = x_B^i \bigoplus x_B^s$
- Output: $x_{AB} = G_{A \to B}(x_A, x_B) = x_A^i \bigoplus x_B^s$ $x_{BA} = G_{B \to A}(x_B, x_A) = x_B^i \bigoplus x_A^s$

Example:

System Architecture

Loss Function

•
$$\ell_{\text{GAN}} = \log d_A(x_A) + \log(1 - d_A(x_{BA}))$$

 $+ \log d_B(x_B) + \log(1 - d_B(x_{AB}))$
• $\ell_{\text{dual}}^{\text{im}}(x_A, x_B) = ||x_A - \hat{x}_A||^2 + ||x_B - \hat{x}_B||^2$ Image level
• $\ell_{\text{dual}}^{\text{di}}(x_A, x_B) = ||x_A^i - \hat{x}_A^i||^2 + ||x_B^i - \hat{x}_B^i||^2$ x^i level
• $\ell_{\text{dual}}^{\text{ds}}(x_A, x_B) = ||x_A^s - \hat{x}_A^s||^2 + ||x_B^s - \hat{x}_B^s||^2$ x^s level

Male ↔ Female

Bag → Edge

11/14/2018

Dual Learning from Labeled Data

- Dual supervised learning
- Dual inference
- Multi-agent dual learning
- Model-level dual learning

Probabilistic View of Structural Duality

• The structural duality implies strong probabilistic connections between the models of dual AI tasks.

$$P(x,y) = P(x)P(y|x;f) = P(y)P(x|y;g)$$

Primal View

Dual View

- This can be used beyond unsupervised learning
 - Structural regularizer to enhance supervised learning
 - Additional criterion to improve inference

Dual Supervised Learning

can learn from labeled data more effectively

ICML 2017

Dual Supervised Learning

the joint probability P(x, y) = P(x)P(y|x; f) - P(y)P(x|y; g): the gap betwee

Tao Qin - ACML 2018

Loss Function and Algorithm

objective 1:
$$\min_{\theta_{xy}} (1/n) \sum_{i=1}^{n} \ell_1(f(x_i; \theta_{xy}), y_i),$$

objective 2:
$$\min_{\theta_{yx}} (1/n) \sum_{i=1}^{n} \ell_2(g(y_i; \theta_{yx}), x_i),$$

s.t.
$$P(x) P(y|x; \theta_{xy}) = P(y) P(x|y; \theta_{yx}), \forall x, y,$$

$$\ell_{\text{duality}} = (\log \hat{P}(x) + \log P(y|x;\theta_{xy})) - \log \hat{P}(y) - \log P(x|y;\theta_{yx}))^2.$$

Algorithm 1 Dual Supervise Learning Algorithm

Input: Marginal distributions $\hat{P}(x_i)$ and $\hat{P}(y_i)$ for any $i \in [n]$; Lagrange parameters λ_{xy} and λ_{yx} ; optimizers Opt_1 and Opt_2 ;

repeat

Get a minibatch of m pairs $\{(x_j, y_j)\}_{j=1}^m$; Calculate the gradients as follows:

$$G_{f} = \nabla_{\theta_{xy}}(1/m) \sum_{j=1}^{m} \left[\ell_{1}(f(x_{j};\theta_{xy}),y_{j}) + \lambda_{xy}\ell_{\text{duality}}(x_{j},y_{j};\theta_{xy},\theta_{yx}) \right];$$

$$G_{g} = \nabla_{\theta_{yx}}(1/m) \sum_{j=1}^{m} \left[\ell_{2}(g(y_{j};\theta_{yx}),x_{j}) + \lambda_{yx}\ell_{\text{duality}}(x_{j},y_{j};\theta_{xy},\theta_{yx}) \right];$$
(4)

Update the parameters of f and g: $\theta_{xy} \leftarrow Opt_1(\theta_{xy}, G_f), \theta_{yx} \leftarrow Opt_2(\theta_{yx}, G_g).$ **until** models converged

Neural Machine Translation

11/14/2018

Image Understanding

- Dataset: CIFAR10
- Primal model: ResNet
- Dual model: PixelCNN++
- Marginal distribution
 - *P*(*y*) for label: uniform distribution
 - *P*(*x*) for image: PixelCNN++

Image Understanding Image Classification vs. Image Generation

me	error (%)		
Maxo	9.38		
NI	8.81		
DSI	8.22		
	# layers	# params	
FitNet [35]	19	2.5M	8.39
Highway [42, 43]	19	2.3M	7.54 (7.72±0.16)
Highway [42, 43]	32	1.25M	8.80
 ResNet	20	0.27M	8.75
ResNet	32	0.46M	7.51
ResNet	44	0.66M	7.17
ResNet	56	0.85M	6.97
ResNet	110	1.7M	6.43 (6.61±0.16)
 ResNet	1202	19.4M	7.93
		-	

Image classification

	Error rate (%)
ResNet-32(baseline)	7.51
Dual ResNet-32	6.82
ResNet-110 (baseline)	6.43
Dual ResNet-110	5.40

Image generation Bit per dimension: 2.94->2.93

https://github.com/Microsoft/DualLearning

				Table 6. Sentence generation with given sentiments		
Sentiment Analysis			Base	<i>i've seen this movie a few times. it's still one of my favorites. the plot is simple, the acting is great.</i>		
Sentence classification			(Pos)	It's a very good movie, and i think it's one of the best movies i've seen in a long time.		
Sentence x Sentence $x = g(y)$ $f: x \rightarrow y$ Label $y = f(x)$ label y		DSL (Pos)	I have nothing but good things to say about this movie. I saw this movie when it first came out, and I had to watch it again and again. I really enjoyed this movie. I thought it was a very good movie. The acting was great, the story was great. I would recommend this movie to anyone. I give it 10 / 10.			
$g: y \rightarrow x$ Conditional sentence generation			Base	after seeing this film, i thought it was going to be one of the worst movies i've ever seen; the acting		
			(Neg)	was bad, the script was bad. the only thing i can		
	Classification Error (%)	Generation Perplexity		this is a difficult movie to watch, and would, not		
baseline	10.10	59.19	DSL	recommend it to anyone. The plot is predictable,		
DSL	9.20	58.78	Neg	the acting is bad, and the script is awful. Don't waste your time on this one.		

100 https://github.com/Microsoft/DualLearning

Theoretical Analysis

• Dual supervised learning generalizes better than standard supervised learning

Theorem 1 ((Mohri et al., 2012)). Let $\ell_1(f(x), y) + \ell_2(g(y), x)$ be a mapping from $\mathcal{X} \times \mathcal{Y}$ to [0, 1]. Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$, the following inequality holds for any $(f, g) \in \mathcal{H}_{dual}$, $R(f, g) \leq R_n(f, g) + 2\mathfrak{R}_n^{DSL} + \sqrt{\frac{1}{2n} \ln(\frac{1}{\delta})}.$ (7) $\mathcal{H}_{dual} \text{ as } (\mathcal{F} \times \mathcal{G}) \cap \mathcal{D}$ The product space of the two models satisfying probabilistic duality: P(x)P(y|x; f) = P(y)P(x|y; g)

Even if you cannot change/re-train models, Dual Inference

can help boost the inference results

IJCAI 2017

Neural Machine Translation

Image Understanding

- Dataset: CIFAR10
- Primal model: ResNet
- Dual model: PixelCNN++
- Marginal distribution
 - P(y) for label: uniform distribution
 - *P*(*x*) for image: PixelCNN++

Image Understanding Image Classification vs. Image Generation

me	error (%)				
Maxo	9.38				
NIN	NIN [25]				
DSI	DSN [24]				
	# layers	# params			
FitNet [35]	19	2.5M	8.39		
Highway [42, 43]	19	2.3M	$7.54(7.72\pm0.16)$		
Highway [42, 43]	32	1.25M	8.80		
ResNet	20	0.27M	8.75		
ResNet	32	0.46M	7.51		
ResNet	44	0.66M	7.17		
ResNet	56	0.85M	6.97		
ResNet	110	1.7M	6.43 (6.61±0.16)		
ResNet	1202	19.4M	7.93		

Sentiment Analysis

Sentiment Analysis

Standa rd	this movie is one of the funniest movies i have ever seen. the acting is great, the plot is simple. it is one of the best movies i've seen in a long time
Dual	<i>i love this movie. i watched it over and over again</i> and <i>i</i> have to say that it is one of the best movies i've seen in a long time. the plot is simple, the acting is great. if you are looking for a good movie, go to see this movie
Standa rd	when i first saw this movie, i thought it was going to be funny, but it didn't. it was so bad, i didn't think it was going to be funny. the only thing I can say about this movie is that it is so bad that it's not funny.
Dual	<i>i give it 2 out of 10</i> because , it's the worst movie I have ever seen . the only thing i can say about this movie is that it is so bad that it makes no sense at all . don't waste your time .

Theoretical Analysis

• Dual inference has generalization guarantee although training and inference become a little inconsistent.

Theorem 1. Fix $\rho > 0$, for any $\delta > 0$, with probability at least $1 - \delta$ over the choice of a sample S of size m drawn i.i.d. according to \mathcal{D} , the following inequality holds: $R(\varphi) \leq \hat{R}_{S,\rho}(\varphi) + \frac{8c}{\rho} \left(\alpha \Re_m(\Pi_1(\mathcal{H}_f)) + (1 - \alpha) \Re_m(\Pi_1(\mathcal{H}_g)) \right) + \frac{1}{\rho} \sqrt{\frac{2}{m}} + \sqrt{\frac{1}{2m} \log \left(\lceil \frac{4}{\rho^2} \log(\frac{mc^2\rho^2}{2}) \rceil + 1 \right) + \frac{1}{2m} \log \frac{1}{\delta}}.$

The generalization bound for dual inference is comparable to that of standard inference.

Multi-agent Dual Learning

Ensemble multiple primal/dual models

Ongoing work

Refresh of Dual Learning

Motivation

Employing multiple agents can improve evaluation qualities: *Multi-Agent Dual Learning*

Train and update f_0 and g_0

Framework

A Computation-Efficient Solution

- It is too cost to load 2N models into GPU memory
- An off-policy way:

• Given an
$$x$$
, $\hat{y} \sim \frac{1}{N-1} \sum_{i=1}^{N-1} f_i(x)$; Given a $y, \hat{x} \sim \frac{1}{N_i-1} \sum_{j=1}^{N-1} g_j$
• Calculate $P_{x \to \hat{y}} = \frac{1}{N-1} \sum_{i=1}^{N-1} P(\hat{y}|x; f_i)$, $P_{y \to \hat{x}} = \frac{1}{N-1} \sum_{j=1}^{N-1} P(\hat{x}|y; g_j)$
 $A_{\hat{y} \to x} = \sum_{j=1}^{N-1} P(x|\hat{y}; g_j)$, $A_{\hat{x} \to y} = \sum_{i=1}^{N-1} P(y|\hat{x}; f_i)$
• $f_0 = f_0 - \eta \nabla_{f_0} \left[\frac{(N-1)P_{x \to \hat{y}} + P(\hat{y}|x; f_0)}{NP_{x \to \hat{y}}} \log \left(\frac{A_{\hat{y} \to x} + P(x|\hat{y}; g_0)}{N} \right) + \frac{(N-1)P_{y \to \hat{x}} + P(\hat{x}|y; g_0)}{NP_{y \to \hat{x}}} \log \left(\frac{A_{\hat{x} \to y} + P(y|x; f_0)}{N} \right) \right]$

- Similar for g_0
- The GPU only needs to load 2 models only
 - If we focus on one-direction translation, only 1 model needs to be loaded

IWSLT 2014 (*<200k bilingual data*)

Tao Qin - ACML 2018

WMT 2014 (4.5M bilingual data)

• On Bench-mark dataset WMT 2014,

Tao Qin - ACML 2018

WMT 2016 Unsupervised NMT (*0 bilingual data*)

WMT En->De 2016~2018

System	2016	2017	2018*
Transformer-big (x1)	38.6	31.3	46.5
+Ensemble (x4)	39.3	31.6	47.9
+R2L Reranking (x4)	39.3	31.7	48.0
+Transformer-LM	39.6	31.9	48.3

	2016	2017	2018
Facebook's model (single)	37.04 ± 0.16	31.86 ± 0.21	44.63 ± 0.12
Facebook's model (ensemble)	37.99	32.80	46.05
Multi-Agent Dual (Single)	40.71 ± 0.08	33.47 ± 0.15	48.97 ± 0.06
Multi-Agent Dual (Ensemble)	41.19	34.12	49.77

Model-level Dual Learning Beyond data-level dual learning

ICML 2018

Recap of Dual Learning

- Dual unsupervised learning:
 - $x \to \hat{y} \to \hat{x}$; Build feedback signal $\Delta(x, \hat{x})$; Update
 - Reconstruction duality
- Dual supervised Learning:
 - P(x)P(y|x) = P(y)P(x|y) as constraint
 - Joint-probability duality
- Dual transfer learning:
 - $P(y) = \sum_{x} P(x, y)$
 - Marginal distribution duality
- Dual inference:
 - $\operatorname{argmin}_{y' \in \mathcal{Y}} \alpha \ell_p(x, y') + (1 \alpha) \ell_d(x, y')$
 - *Reconstruction & Joint-probability duality*

data-level duality

A Further Step

- We find that there exists "model-level duality"
- Take English↔Chinese as an example

- Why don't we share the modules that have similar functionality ?
 - $E_{en} = D_{en}$; $E_{zh} = D_{zh}$

Quick View of the Model

Symmetric Settings

works for encoder-decoder based framework i.e., both $\mathcal X$ and $\mathcal Y$ are sequence collections

Tao Qin - ACML 2018

Asymmetric Settings

works for encoder-classifier based framework i.e., \mathcal{X} might be collections of sequences; $\mathcal{Y} = \{0, 1, \dots, c\}$

Results: Symmetric Setting

Table 1. BLEU scores on IWSTL14 De \rightarrow En. We do not find reasonable numbers for IWSLT En \rightarrow De translation task since most research works focus on De \rightarrow En.

Existing Results on IWSLT De \rightarrow En

GRU + Dual Learning (Wang et al., 2018)	32.05
GRU + Dual Transfer Learning (Wang et al., 2018)	32.35
CNN + reinforcement learning (Edunov et al., 2017)	32.93

Model	De→En	En→De
Transformer	32.86	27.74
DSL	33.58	27.91
Ours	34.71	28.64

Results: Symmetric Setting

Zh→En	NIST 04	NIST 05	NIST 06	NIST 08	NIST 12
MRT (Shen et al., 2016)	41.37	38.81	29.23	-	-
VRNMT (Su et al., 2018)	41.07	36.82	36.72	-	-
SD-NMT (Wu et al., 2017)	-	39.38	41.81	33.06	31.43
GRU+DSL (Xia et al., 2017b)	-	-	-	33.59	32.00
Transformer	42.62	43.13	41.41	33.43	32.75
DSL	42.90	43.21	41.99	34.41	32.93
Ours	43.38	44.16	42.60	35.05	34.19
En→Zh	NIST04	NIST05	NIST06	NIST08	NIST12
Bi-Attn (Cheng et al., 2016)	16.98	15.70	16.25	13.80	-
GRU+DSL (Xia et al., 2017b)	-	-	-	15.87	16.10
Transformer	23.24	21.76	21.67	17.23	15.76
DSL	23.62	22.22	22.31	17.79	16.61
Ours	24.23	22.46	21.80	18.06	16.54

Table 2. Translation results of Zh \leftrightarrow En. Blank tabular means that the corresponding results are not reported.

Results: Symmetric Setting

	En→De	De→En
GNMT (Wu et al., 2016)	24.61	-
CNN (Gehring et al., 2017)	25.16	29.61
	En De	De→En
Model	Еп→De	
Model Transformer	28.4	31.4

Results: Asymmetric Setting

Table 5. Results of sentiment analysis on IMDB dataset (supervised data only). Existing results include [1] (Dai & Le, 2015) [2] (Johnson & Zhang, 2015) [3] (Johnson & Zhang, 2016).

Previous Works	Error Rate (%)	
Standard LSTM [1]	10	
oh-2LSTMp [3]	8.14	
Model	Error Rate (%)	Perplexity
Model LSTM	Error Rate (%) 10.10	Perplexity 59.19
Model LSTM DSL	Error Rate (%) 10.10 9.20	Perplexity 59.19 58.78

Results: + Dual inference

- NMT
 - De→En: 34.71 → **35.19**
 - En \rightarrow De: 28.64 \rightarrow 28.83
- Sentiment classification
 - $7.41 \rightarrow 6.96$

More Applications

Neural machine translation	Image understanding	Sentiment analysis
Question Answering/generation	Image translation	Face manipulation

Dual Question Answering/Generation

Duyu Tang, Nan Duan, Tao Qin, and Ming Zhou. "Question Answering and Question Generation as Dual Tasks." arXiv preprint arXiv:1706.02027 (2017).

- Primal task: question answering, question → answer
- Dual task: question generation, answer → question

Method	MARCO	SQUAD	WikiQA
Basic QG	8.87	4.34	2.91
Dual QG	9.31	5.03	3.15

Table 5: QG performance (BLEU-4 scores) on MARCO, SQUAD

Method	MARCO			SQUAD		
Method	MAP	MRR	P@1	MAP	MRR	P@1
WordCnt	0.3956	0.4014	0.1789	0.8089	0.8168	0.6887
WgtWordCnt	0.4223	0.4287	0.2030	0.8714	0.8787	0.7958

Dual learning can significantly improve the accuracy of both question answering and generation

Visual Question Answering/Generation

Yikang Li, Nan Duan, Bolei Zhou, Xiao Chu, Wanli Ouyang, Xiaogang Wang, Ming Zhou, "Visual Question Generation as Dual Task of Visual Question Answering", CVPR, 2018.

Visual Question Answering/Generation

Yikang Li, Nan Duan, Bolei Zhou, Xiao Chu, Wanli Ouyang, Xiaogang Wang, Ming Zhou, "Visual Question Generation as Dual Task of Visual Question Answering", CVPR, 2018.

Summary

- Basic idea: leverage structure duality for machine learning
- Works for different learning settings
 - Unsupervised/semi-supervised learning, supervised learning, transfer learning
 - Both training and inference
 - Both data level and model level
- Applied to many applications
 - Machine translation, question answering/generation, ...
 - Image classification/generation, sentiment classification/generation, ...
 - Image translation, face manipulation, ...

Outlook

- More algorithms, more applications
- Stability, efficiency
- Theoretical understanding
 - When it works/fails
 - Why it works
- Open-source tools

We're hiring!

If you are passionate about machine learning research, especially deep learning and reinforcement learning, welcome to join us!!

Contact: taoqin@Microsoft.com http://research.Microsoft.com/~taoqin