

Recent Advances in Neural Machine Translation

Tao Qin Senior Research Manager Microsoft Research Asia

Why Machine Translation?

Nimdzi-100-First-Edition.pdf

Why Machine Translation?

- \cdot A very challenging AI task and hot research area
 - Popular in NLP conferences, e.g., ACL, EMNLP, NAACL, ...
 - Popular in ML conferences, e.g., NIPS, ICML, ICLR, ...
 - · Popular in Al conferences, e.g., IJCAI, AAAI, ...
- \cdot Dedicated conferences for MT
 - · 17th Machine Translation Summit
 - · 3rd Conference on Machine Translation (WMT18)

Credit: Christopher Manning

Encoder-Decoder for sequence generation

e=(Economic, growth, has, slowed, down, in, recent, years,.)

Encoder-Decoder for Machine Translation

Sutskever et al., NIPS, 2014

Encoder-Decoder with Attention

Bahdanau et al., ICLR, 2015

Encoder-Decoder with Attention

Bahdanau et al., ICLR, 2015

Outline

- Improve word embeddings
 - Frequency-agnostic word embeddings (NIPS 2018)
- Improve data efficiency: dual learning
 - Dual learning from unlabeled data (NIPS 2016)
 - Dual learning from labeled data (ICML 2017)
 - Multi-agent dual learning (ongoing)
- Improve inference efficiency: non-autoregressive machine translation
 - Non-autoregressive MT with enhanced inputs (AAAI 2018)
 - Non-autoregressive MT with teacher regularization (AAAI 2018)

Part 1: Improve word embeddings

FRAGE: Frequency-Agnostic Word Embeddings

NIPS 2018

Observation

In many NLP tasks, the rare words and popular words behave differently in the embedding space.

Observation

The neighbors of a rare word are not reasonable.

Consequence

- We found more than 50% rare words should be semantically related to popular words (citizen-citizenship), but such relationships are not reflected from the embedding space.
- It will consequently limit the performance of down-stream tasks using the embeddings.
 - Text classification: Peking is a wonderful city != Beijing is a wonderful city

Our Solution

We want that popular words and rare words are mixed together in the embedding space.

One cannot differentiate the frequency (popular? rare?) of a word from the embedding space.

We train a discriminator together with the NLP model using adversarial training.

Word Embeddings

FRAGE

Experimental Results – Machine Translation

More experiments

 According to 10 experiments, FRAGE is better and even achieves state-of-the-art performance.

Word similarity

Language modeling

Baseline AWD-LSTM-MoS Ours

Text classification

Accuracy

■ Baseline RCNN ■ Ours

Part 2: Improve data efficiency through dual learning

Structural Duality in Al

Structural duality is very common in artificial intelligence

AI Tasks	$X \rightarrow Y$	$\mathbf{Y} \rightarrow \mathbf{X}$
Machine translation	Translation from language EN to CH	Translation from language CH to EN
Speech processing	Speech recognition	Text to speech
Image understanding	Image captioning	Image generation
Conversation	Question answering	Question generation (e.g., Jeopardy!)
Search engine	Query-document matching	Query/keyword suggestion

Primal Task

Dual Task

Currently most machine learning algorithms do not exploit structure duality for training and inference.

Dual Learning

- A new learning framework that leverages the primal-dual structure of AI tasks to obtain effective feedback or regularization signals to enhance the learning/inference process.
- Algorithms
 - Dual unsupervised learning (NIPS 2016)
 - Dual supervised learning (ICML 2017)
 - Multi-agent dual learning (ongoing work)

Dual Unsupervised Learning

NIPS 2016

Dual Unsupervised Learning

En->Ch translation

Reinforcement Learning algorithms can be used to improve both primal and dual models according to feedback signals

Experimental Setting

- Baseline: Neural Machine Translation (NMT)
 - One-layer RNN model, trained using 100% bilingual data (10M)
 - Neural Machine Translation by Jointly Learning to Align and Translate, by Bengio's group (ICLR 2015)
- Our algorithm:
 - Step 1: Initialization

Starting from initial models obtained from only 10% bilingual data, dual learning can achieve similar accuracy as the NMT model learned from 100% bilingual data!

update the dual models based on monolingual data	NMT with 10%	Dual learning with	NMT with 100%	
monomgaaraata	bilingual data	10% bilingual data	bilingual data	

Probabilistic View of Structural Duality

• The structural duality implies strong probabilistic connections between the models of dual AI tasks.

$$P(x,y) = P(x)P(y|x;f) = P(y)P(x|y;g)$$

Primal View

Dual View

- This can be used beyond unsupervised learning
 - Structural regularizer to enhance supervised learning
 - Additional criterion to improve inference

Dual Supervised Learning

ICML 2017

Dual Supervised Learning

Feedback signals during the loop:

• R(x, f, g) = |P(x)P(y|x; f) - P(y)P(x|y; g)|: the gap between the joint probability P(x, y) obtained in two directions

Theoretical Analysis

• Dual supervised learning generalizes better than standard supervised learning

Theorem 1 ((Mohri et al., 2012)). Let $\ell_1(f(x), y) + \ell_2(g(y), x)$ be a mapping from $\mathcal{X} \times \mathcal{Y}$ to [0, 1]. Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$, the following inequality holds for any $(f, g) \in \mathcal{H}_{dual}$, $R(f, g) \leq R_n(f, g) + 2\mathfrak{R}_n^{DSL} + \sqrt{\frac{1}{2n} \ln(\frac{1}{\delta})}.$ (7)

$$\longrightarrow \mathcal{H}_{\text{dual}} \text{ as } (\mathcal{F} \times \mathcal{G}) \cap \mathcal{D}$$

The product space of the two models satisfying probabilistic duality: P(x)P(y|x; f) = P(y)P(x|y; g)

Dual Learning for Deep NMT Models

[1] Deep recurrent models with fast-forward connections for neural machine translation. Transactions of the Association for Computational Linguistics, 2016 [2]Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv:1609.08144, 2016

[3] Convolutional sequence to sequence learning. ICML 2017

[4] Attention Is All You Need. NIPS 2017

[5] Our own deep LSTM model: 4-layer encoder, 4-layer decoder. NIPS 2017

//newstest2017

Human Parity In Machine Translation

AI score: 69.5Human score: 69.0Dual learningDeliberation learning

@2018.3

Microsoft reaches a historic milestone, using Al to match human performance in translating news from Chinese to English

March 14, 2018 | Allison Linn

微软人工智能又一里程石 微软中-英机器翻译水平 可"与人类媲美"

四大技术为创新加持>

Multi-agent Dual Learning

Ongoing work

Refresh of Dual Learning

Motivation

Employing multiple agents can improve evaluation quality: *Multi-Agent Dual Learning*

Train and update f_0 and g_0

Framework

IWSLT 2014 (<200k bilingual data)

WMT 2014 (4.5M bilingual data)

State-of-the-art results with WMT2014 data only

Summary of Data Efficiency

Dual unsupervised learning	Improve the efficiency of unlabeled dataAlso works for semi-supervised learning
Dual supervised learning	Improve the efficiency of labeled dataFocus on probabilistic connection of structure duality
Multi-agent dual learning	 Ensemble of multiple primal and dual models to improve data efficiency Works for both labeled and unlabeled data

More on Dual Learning

- DualGAN for image translation (ICCV2017)
- Dual face manipulation (CVPR 2017)
- Semantic image segmentation (CVPR 2017)
- Question generation/answering (EMNLP 2017)
- Image captioning (CIKM 2017)
- Dual transfer learning (AAAI 2018)
- Unsupervised machine translation (ICLR 2018/2018)

More on Dual Learning

- Model-level dual learning (ICML 2018)
- Conditional image translation (CVPR 2018)
- Visual question generation/answering (CVPR 2018)
- Face aging/rejuvenation (IJCAI 2018)
- Safe Semi-Supervised Learning (ACESS 2018)
- Image rain removal (BMVC 2018)

• ...

Part 3: Improve inference efficiency with nonautoregressive translation models

Background

Neural machine translation models are usually based on autoregressive factorization

$$P(y|x) = P(y_1|x) \times P(y_2|y_1, x)$$

$$\times \cdots \times P(y_T|y_1, \dots, y_{t-1}, x)$$

Inference latency bottleneck

• Parallelizable Training v.s. Non-parallelizable Inference

Non-autoregressive NMT

Use a deep neural network to predict target length

Use a deep neural network to copy source embedding to target embedding

Generate target tokens in parallel

Non-autoregressive NMT (NART v.s. ART)

Non-autoregressive Translation Model with Enhanced Decoder Inputs

AAAI 2019

Motivation

Autoregressive models take target words as decoder inputs Non-autoregressive models take source words as decoder inputs

Our Proposal: the Hard Model

Leverage a phrase table to translate source words/phrases to target words/phrases

If given a large bilingual corpus, we can train a good phrase transition table using SMT

Our Proposal: the Soft Model

Linearly transform source word embeddings to target word embeddings

Results

	WMT14		WMT16 IWSLT14			
Models	En–De	De-En	En-Ro	De-En	Latency /	Speedup
LSTM-based S2S	24.60	/	/	28.53	/	/
Transformer Teacher	27.41^{\dagger}	31.29^{\dagger}	35.61^\dagger	32.55^\dagger	607 ms	$1.00 \times$
LT	19.80	/	/	/	105 ms	$5.78 \times$
LT (rescoring 10 candidates)	21.00	/	/	/	/	/
LT (rescoring 100 candidates)	22.50	/	/	/	/	/
NART	17.69	21.47	27.29	22.95^\dagger	39 ms	$15.6 \times$
NART (rescoring 10 candidates)	18.66	22.41	29.02	25.05^\dagger	79 ms	7.68 imes
NART (rescoring 100 candidates)	19.17	23.20	29.79	/	257 ms	$2.36 \times$
Phrase-to-Phrase	6.03	11.24	9.16	15.69	/	/
ENAT Hard	20.26	23.23	29.85	25.09	25 ms	$24.3 \times$
ENAT Hard (rescoring 9 candidates)	23.22	26.45	34.04	28.60	50 ms	$12.1 \times$
ENAT Soft	20.65	23.02	30.08	24.13	24 ms	25.3 ×
ENAT Soft (rescoring 9 candidates)	24.19	26.10	34.13	27.30	49 ms	$12.4 \times$

Non-autoregressive Translation Model with Auxiliary Regularization

AAAI 2019

Motivation Example

Source	vor einem jahr oder so , las ich eine studie , die mich wirklich richtig umgehauen hat .
Target	i read a study a year or so ago that really blew my mind wide open .
Transformer	one year ago , or so , i read a study that really blew me up properly .
NART	so a year , , i was to a a a year or , read that really really really me me .

• Incomplete Translation

Our Solution

Results

Madala/Datasata	WMT14	WMT14	IWSLT14	IWSLT16	Latanav	Canadam
Models/Datasets	En-De	De-En	De-En	En-De	Latency	speedup
Autoregressive Models (AT Teachers)		1	1		1	1
Transformer (NAT-FT, (Gu et al. 2018))	23.45	27.02	31.47^{\dagger}	29.70	_	_
Transformer (NAT-IR, (Lee, Mansimov, and Cho 2018))	24.57	28.47	30.90^{\dagger}	28.98	_	_
Transformer (LT, (Kaiser et al. 2018))	27.3	/	/	1	_	_
Transformer (NAT-REG)	27.3	31.29	33.52	28.35	607 ms	$1.00 \times$
Transformer (NAT-REG, Weakened Teacher)	24.50	28.76	/	/	-	_
Non-Autoregressive Models		•	•	•		•
NAT-FT (no NPD)	17.69	21.47	20.32^{\dagger}	26.52	39 ms	$15.6 \times$
NAT-FT (NPD rescoring 10)	18.66	22.41	21.39^{\dagger}	27.44	79 ms	7.68 imes
NAT-FT (NPD rescoring 100)	19.17	23.20	24.21^{\dagger}	28.16	257 ms	2.36 imes
NAT-IR (1 refinement)	13.91	16.77	21.86^{\dagger}	22.20	68 [†] ms	$8.9 \times$
NAT-IR (10 refinements)	21.61	25.48	23.94^{\dagger}	27.11	404 [†] ms	$1.5 \times$
NAT-IR (adaptive refinements)	21.54	25.43	24.63^{\dagger}	27.01	320 [†] ms	1.9 imes
LT (no rescoring)	19.8	/	/	1	105 ms	$5.78 \times$
LT (rescoring 10)	21.0	/	/	1	/	/
LT (rescoring 100)	22.5	/	/	/	/	/
NAT-REG (no rescoring)	20.79	24.77	24.11	23.14	16 ms	$37.9 \times$
NAT-REG (rescoring 9)	24.87	29.04	28.14	27.02	33 ms	$18.3 \times$
NAT-REG (WT, no rescoring)	19.15	23.20	/	/	-	-
NAT-REG (WT, rescoring 9)	22.80	27.12	/	/	-	-

Summary of Efficient Inference

Hard word Translation	 Use a phrase translation table to enhance the decoder input
Soft embedding mapping	 Linearly transform source word embeddings to target word embeddings to enhance the decoder input
Similarity regularization	 Regularize the hidden states of the NART model to avoid repeated translations
Dual-translation regularization	 Handle incomplete translations through back- translation

Thanks!

taoqin@Microsoft.com
http://research.Microsoft.com/~taoqin

References and Acknowledgements

- Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei Wang, and Tie-Yan Liu, FRAGE: Frequency-Agnostic Word Representation, NIPS 2018
- Di He, Yingce Xia, Tao Qin, Tie-Yan Liu, and Wei-Ying Ma, Dual Learning for Machine Translation, NIPS 2016
- Yingce Xia, Tao Qin, Wei Chen, Tie-Yan Liu, Dual Supervised Learning, ICML 2017
- Yiren Wang, Fei Tian, Di He, Tao Qin, Chengxiang Zhai, Tie-Yan Liu, Non-Autoregressive Machine Translation with Auxiliary Regularization, AAAI 2019
- Junliang Guo, Xu Tan, Di He, Tao Qin, Tie-Yan Liu, Non-Autoregressive Neural Machine Translation with Enhanced Decoder Input, AAAI 2019

We're hiring!

If you are passionate about machine learning research, especially deep learning and reinforcement learning, welcome to join us!!

Contact: <u>taoqin@Microsoft.com</u> <u>http://research.Microsoft.com/~taoqin</u>