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Abstract

As a new neural machine translation approach, Non-
Autoregressive machine Translation (NAT) has attracted at-
tention recently due to its high efficiency in inference. How-
ever, the high efficiency has come at the cost of not capturing
the sequential dependency on the target side of translation,
which causes NAT to suffer from two kinds of translation er-
rors: 1) repeated translations (due to indistinguishable adja-
cent decoder hidden states), and 2) incomplete translations
(due to incomplete transfer of source side information via the
decoder hidden states). In this paper, we propose to address
these two problems by improving the quality of decoder hid-
den representations via two auxiliary regularization terms in
the training process of an NAT model. First, to make the hid-
den states more distinguishable, we regularize the similarity
between consecutive hidden states based on the correspond-
ing target tokens. Second, to force the hidden states to contain
all the information in the source sentence, we leverage the
dual nature of translation tasks (e.g., English to German and
German to English) and minimize a backward reconstruction
error to ensure that the hidden states of the NAT decoder are
able to recover the source side sentence. Extensive experi-
ments conducted on several benchmark datasets show that
both regularization strategies are effective and can alleviate
the issues of repeated translations and incomplete translations
in NAT models. The accuracy of NAT models is therefore
improved significantly over the state-of-the-art NAT models
with even better efficiency for inference.

Introduction
Neural Machine Translation (NMT) based on deep neural
networks has gained rapid progress over recent years (Cho et
al. 2014; Bahdanau, Cho, and Bengio 2014; Wu et al. 2016;
Vaswani et al. 2017; Hassan et al. 2018). NMT systems are
typically implemented in an encoder-decoder framework,
in which the encoder network feeds the representations of
source side sentence x into the decoder network to gener-
ate the tokens in target sentence y. The decoder typically
works in an auto-regressive manner: the generation of the t-
th token yt follows a conditional distribution P (yt|x, y<t),
where y<t represents all the generated tokens before yt.
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Therefore, during the inference process, we have to sequen-
tially translate each target-side word one by one, which sub-
stantially hampers the inference efficiency of NMT systems.

To alleviate the latency of inference brought by auto-
regressive decoding, recently the community has turned to
Non-Autoregressive Translation (NAT) systems (Gu et al.
2018; Lee, Mansimov, and Cho 2018; Kaiser et al. 2018).
A basic NAT model has the same encoder-decoder archi-
tecture as the autoregressive translation (AT) model, except
that the sequential dependency within the target side sen-
tence is omitted. In this way, all the tokens can be gen-
erated in parallel, and the inference speed is thus signifi-
cantly boosted. However, it comes at the cost that the trans-
lation quality is largely sacrificed since the intrinsic depen-
dency within the natural language sentence is abandoned. To
mitigate such performance degradation, previous work has
tried different ways to insert intermediate discrete variables
to the basic NAT model, so as to incorporate some light-
weighted sequential information into the non-autoregressive
decoder. The discrete variables include the autoregressively
generated latent variables (Kaiser et al. 2018), and the fer-
tility information brought by a third-party word alignment
model (Gu et al. 2018). However, leveraging such discrete
variables not only brings additional difficulty for optimiza-
tion, but also slows down the translation by introducing extra
computational cost for producing such discrete variables.

In this paper, we propose a new solution to the problem
that does not rely on any discrete variables and makes lit-
tle revision to the basic NAT model, thus retaining most of
the benefit of an NAT model. Our approach was motivated
by the following result we obtained from carefully analyz-
ing the key issues existed in the basic NAT model. We em-
pirically observed that the two types of translation errors
frequently made by the basic NAT model are: 1) repeated
translation, where the same token is generated repeatedly at
consecutive time steps; 2) incomplete translation, where the
semantics of several tokens/sentence pieces from the source
sentence are not adequately translated. Both issues suggest
that the decoder hidden states in NAT model, i.e., the hid-
den states output in the topmost layer of the decoder, are of
low quality: the repeated translation shows that two adjacent
hidden states are indistinguishable, leading to the same to-
kens decoded out, while the incomplete translation reflects
that the hidden states in the decoder are incomplete in repre-



senting source side information.
Such a poor quality of decoder hidden states is in fact a

direct consequence of the non-autoregressive nature of the
model: at each time step, the hidden states have no access
to their prior decoded states, making them in a ‘chaotic’
state being unaware of what has and has not been translated.
Therefore, it is difficult for the neural network to learn good
hidden representations all by itself. Thus, in order to im-
prove the quality of the decoder representations, we must go
beyond the pure non-autoregressive models. The challenge,
though, is how to improve the quality of decoder representa-
tions to address the two problems identified above while still
keeping the benefit of efficient inference of the NAT models.

We propose to address this challenge by directly regular-
izing the learning of the decoder representations using two
auxiliary regularization terms for model training. First, to
overcome the problem of repeated translation, we propose to
force the similarity of two neighboring hidden state vectors
to be well aligned with the similarity of the embedding vec-
tors representing the two corresponding target tokens they
aim to predict. We call this regularization strategy similar-
ity regularization. Second, to overcome the problem of in-
complete translation, inspired by the dual nature of machine
translation task (He et al. 2016), we propose to impose that
the hidden representations should be able to reconstruct the
source side sentence, which can be achieved by putting an
auto-regressive backward translation model on top of the de-
coder; the backward translation model would “demand” the
decoder hidden representations of NAT to contain enough
information about the source. We call this regularization
strategy reconstruction regularization. Both regularization
terms only appear in the training process and have no ef-
fect during inference, thus bringing no additional computa-
tional/time cost to inference and allowing us to retain the
major benefit of an NAT model. Meanwhile, the direct reg-
ularization on the hidden states effectively improves their
representation. In contrast, the existing approaches would
need either a third-party word alignment module (Gu et al.
2018) (hindering end-to-end learning), or a special compo-
nent handling the discrete variables (e.g., several softmax
operators in (Lee, Mansimov, and Cho 2018)) which brings
additional latency for decoding.

We evaluate the proposed regularization strategies by con-
ducting extensive experiments on several benchmark ma-
chine translation datasets. The experiment results show that
both regularization strategies are effective and they can al-
leviate the issues of repeated translations and incomplete
translations in NAT models, leading to improved NAT mod-
els that can improve accuracy substantially over the state-
of-the-art NAT models without sacrificing efficiency. We
set a new state-of-the-art performance of non-autoregressive
translation models on the WMT14 datasets, with 24.61
BLEU in En-De and 28.90 in De-En.

Background
Neural machine translation (Bahdanau, Cho, and Bengio
2014) (NMT) has been the widely adopted machine transla-
tion approach within both academia and industry. A neural

machine translation system specifies a conditional distribu-
tion P (y|x) of the likelihood of translating source side sen-
tence x into target sentence y. There are typically two parts
in NMT: the encoder network and the decoder network. The
encoder reads the source side sentence x = (x1, · · · , xTx

)
with Tx tokens, and processes it into context vectors which
are then fed into the decoder network. The decoder builds
the conditional distribution P (yt|y<t, x) at each decoding
time-step t, where y<t represents the set of generated tokens
before time-step t. The final distribution P (y|x) is then in
the factorized form P (y|x) =

∏Ty

t=1 P (yt|y<t, x), with y
containing Ty target side tokens y = (y1, · · · , yTy

).
The NMT suffers from the high inference latency, which

limits its application in the real world scenarios. The main
bottleneck comes from its autoregressive nature of the se-
quence generation: each target side token is generated one
by one, which prevents parallelism during inference, and
thus the computational power of GPU cannot be fully ex-
ploited. Recent research efforts have been resorted to solve
the huge latency issue in the decoding process. In the do-
main of speech synthesis, parallel wavenet (van den Oord et
al. 2018) successfully achieves the parallel sampling based
on inverse autoregressive flows (Kingma et al. 2016) and
knowledge distillation (Hinton, Vinyals, and Dean 2015).
In NMT, the non-autoregressive neural machine translation
(NAT) model has been developed recently (Gu et al. 2018;
Lee, Mansimov, and Cho 2018; Kaiser et al. 2018). In NAT,
all the tokens within one target side sentence are gener-
ated in parallel, without any limitation of sequential de-
pendency. The inference speed has thus been significantly
boosted (e.g., tens of times faster than the typical autore-
gressive NMT model) and for the sake of maintaining trans-
lation quality, there are several technical innovations in the
NAT model design from previous exploration:

• Sequence level knowledge distillation. NAT model is typ-
ically trained with the help from an autoregressive trans-
lation (AT) model as its teacher. The knowledge of the
AT model is distilled to the NAT model via the sequence
level distillation technique (Kim and Rush 2016) which is
essentially using the sampled translation from the teacher
model, out from the source side sentences, as the bilin-
gual training data. It has been reported previously (Gu
et al. 2018), and is also consistent with our empirical
studies that training NAT with such distilled data per-
forms much better than the original ground truth data,
or the mixture of ground truth and distilled translations.
There has been no precise theoretical justification, but
an intuitive explanation is that the NAT model suffers
from the ‘multimodality’ problem (Gu et al. 2018) – there
might be multiple valid translations for the same source
word/phrase/sentence. The distilled data via the teacher
model eschew such problem since the output of a neural
network is less noisy and more ‘deterministic’.

• Model architecture modification. The NAT model is sim-
ilar in the framework of encoder and decoder but has sev-
eral differences from the autoregressive model, including
(a) the causal mask of decoder, which prevents the ear-
lier decoding steps from accessing later information, is re-



Figure 1: The overall architecture of NAT model with auxiliary regularization terms. AT stands for autoregressive translation.
Each sublayer of the encoder/decoder contains a residual connection and layer normalization following (Vaswani et al. 2017).

moved; (b) positional attention is leveraged in the decoder
to enhance position information, where the positional em-
beddings (Vaswani et al. 2017) are used as query and key,
and hidden representations from the previous layers are
used as value (Gu et al. 2018).

• Discrete variables to aid NAT model training and infer-
ence. There are intermediate discrete variables in previous
NAT models, which aim to make up the loss of sequen-
tial information in the non-autoregressive decoding. The
representative examples include the fertility value to in-
dicate the number of copying each source side token (Gu
et al. 2018), and the discrete latent variables autoregres-
sively generated (Kaiser et al. 2018). Additional difficulty
arises due to the discreteness, and thus specially designed
optimization processes are necessary such as variational
method (Gu et al. 2018; Lee, Mansimov, and Cho 2018)
and vector quantization (Kaiser et al. 2018).

Model
We introduce the details of our proposed approaches to non-
autoregressive neural machine translation in this section.
The overall model architecture is depicted in Fig. 1.

We use the basic NAT model with the same encoder-
decoder architecture as the AT model, and follow two of
the aforementioned techniques of training NAT models.
First, we train our NAT models based on the sequence-
level knowledge distillation. Second, we obey the aforemen-
tioned model variants specially designed for NAT, such as
the positional attention and removing causal mask in the
decoder (Gu et al. 2018). What makes our solution unique
is that we replace the hard-to-optimize discrete variables in

prior works with two simple regularization terms. As a pre-
requisite, since there are no discrete variables available to
indicate some sequential information, we need new mecha-
nisms to predict the target length during inference and gen-
erate inputs for the decoder, which are necessary for the
NAT model since the information fed into the decoder (i.e.,
the word embeddings of previous target side tokens in au-
toregressive model) is unknown due to parallel decoding.

Target length prediction during inference. Instead of esti-
mating target length Ty with fertility values (Gu et al. 2018),
or with a separate model p(Ty|x) (Lee, Mansimov, and Cho
2018), we use a simple yet effective method as (Anony-
mous 2019) that leverages source length to determine target
length. During inference, the target side length Ty is pre-
dicted as Ty = Tx + ∆T , where Tx is the length of source
sentence, ∆T is a constant bias term that can be set accord-
ing to the overall length statistics of the training data.

Generate decoder input with uniform mapping. Different
from other works relying on the fertility (Gu et al. 2018),
we adopt a simple way of uniformly mapping the source
side word embedding as the inputs to the decoder. Specif-
ically, given source sentence x = {x1, x2, ..., xTx} and tar-
get length Ty , we uniformly map the embeddings (denoted
as E(·)) of the source tokens to generate decoder input with:

zk = E(xi), i =

[
Tx
Ty
t

]
, t = 1, 2, ..., Ty. (1)

We use this variant of the basic NAT model as our back-
bone model (denoted as “NAT-BASE”). We now turn to ana-
lyze the two commonly observed translation issues of NAT-
BASE and introduce the corresponding solutions to tackle
them.



Repeated Translation & Similarity Regularization
The issue of repeated translation refers to the same word
token being successively generated for multiple times, e.g.,
the “mobility mobility , , s” in the second example of Ta-
ble 2. Such an issue is quite common for NAT models. On
IWSLT14 De-En dataset, we empirically find that more than
half of NAT translations contain such repeated tokens. Fur-
thermore, simply de-duplicating such repeated tokens brings
limited gain (shown in Table 3). This is consistent with our
observation that very likely there will be additional transla-
tion errors close to the repeated tokens, e.g., “caniichospital
rates” in the same example. Apparently, it reflects that the
decoder hidden states at consecutive time steps are largely
similar, if the same tokens are decoded out from them.

One natural way to tackle these indistinguishable repre-
sentations is to impose a similarity regularization term to
force the two hidden states to be far away. Here the sim-
ilarity measure to be minimize could be, for example, the
cosine similarity scos(h, h′) = hh′T

||h||·||h′|| and L2 similarity
sl2(h, h′) = −||h − h′||22. Acting in this way is simple and
straightforward, but it is also apparently problematic: the
degree of closeness for each pair of adjacent hidden states
(ht, ht+1) varies with data. Universally imposing the same
similarity regularization term for all data (x, y) and all time-
step t does not accommodate such flexibility. For example,
consider the target side phrase (yt, yt+1, yt+2)=‘hollywood
movie 2019’, the hidden state ht+1 should be closer to ht
than with ht+2, since the token ‘movie’ is semantically more
related with ‘hollywood’ than ‘2019’. Then adding the same
constraint on (ht, ht+1) and (ht+1, ht+2) is sub-optimal.

We therefore adopt a more flexible way to specify the
degree of similarity regularization on two adjacent hidden
states. Our intuition is consistent with the example above:
for (ht, ht+1), if the target tokens (yt, yt+1) which are de-
coded from them are semantically far apart, then the similar-
ity between ht and ht+1 should be correspondingly smaller,
and vice versa. Here the semantic similarity between two
word tokens yt and yt+1 is calculated with their word em-
beddings (Mikolov et al. 2013). The regularization term be-
tween ht and ht+1 then goes as:

Lsim,t = 1 + scos(ht, ht+1) · (1− scos(yt, yt+1)), (2)

where with a little abuse of notations, yt also represents the
target side word embedding in the NMT model for word yt.
The regularization term basically says, if two words yt and
yt+1 are dissimilar (scos(yt, yt+1) is smaller), then the simi-
larity regularization (i.e., scos(ht, ht+1)) should have larger
effect, and vice versa. Here the constant 1 is for keeping the
loss values non-negative. Note here we do not incur gradi-
ents on the word embeddings yt and yt+1 via Eqn. 3, for
fear of bad effects brought by unqualified hidden states to
the training of word embeddings. The overall loss on the
sample (x, y) then is:

Lsim =

Ty∑
t

Lsim,t. (3)

Incomplete Translation & Reconstruction
Regularization
The incomplete translation means that several to-
kens/phrases in the source sentence are neglected by
the translation model. Previously the autoregressive trans-
lation model was also observed to suffer from incomplete
translation (Tu et al. 2016b). However, we empirically find
that with the more powerful backbone model, such as the
deep Transformer, incomplete translation is not common for
autoregressive translation, as is shown by the outputs of the
teacher model in Table 2 (labeled by ‘AT’). However, NAT
suffers from incomplete translation significantly, such as in
the same table, the source side phrase ‘und manches nicht’
in the third example is totally missed by the NAT model. We
further take a close look at 50 randomly non-autoregressive
translation results sampled from IWSLT14 De-En dataset,
and find that more than 30% of them leave something
behind on the source side.

The reconstruction regularization targets at solving the in-
complete translation problem. Concretely speaking, we bor-
row the spirit of dual learning (He et al. 2016) by bringing in
an additional backward translation model P (x|y) which we
further denote as

←−
P for the ease of statement. We couple the

two models (i.e., the original NAT model P translating x to
y and the backward translation model

←−
P translating y to x)

together by feeding the hidden states output by the decoder
of P (i.e., h = {h1, · · · , hTy}) to

←−
P , and asking

←−
P to re-

cover the source sentence from h. Here h simply acts as the
input embeddings for the encoder of

←−
P . The reconstruction

loss for a training data (x, y) then goes as:

Lrec = −
Tx∑
t=1

log
←−
P (xt|h, x<t). (4)

We set the backward translation model
←−
P as the autore-

gressive model since autoregressive model provides more
accurate information.

←−
P will not be used in the inference

process of P . One can easily see
←−
P forces h to be more

comprehensive in storing the source side information by di-
rectly providing x as training objective.

Here another intuitive view to understand the effect of
←−
P

is that it acts in a similar way as the discriminator of gener-
ative adversarial networks (Goodfellow et al. 2014):

←−
P de-

cides whether h is good enough by testing whether x can be
perfectly recovered from h. Then the NAT modelP plays the
effect of the generator with the hope of reconstructing x, and
thus fooling

←−
P . Setting

←−
P to be autoregressive makes the

‘discriminator’ not easily fooled, urging the output of ‘gen-
erator’, i.e., the hidden state h, to be as complete as possible
to deliver the information from source side.

There are prior works for enhancing the adequacy of
translation results, but devoted to autoregressive NMT mod-
els (Tu et al. 2016a; 2016b; 2017). Among all these prior
works, our approach is most technically similar with that
in (Tu et al. 2017), with the difference that for reconstruct-
ing from h to x, we leverage a complete backward trans-



lation model based on encoder-decoder framework, while
they adopt a simple decoder without encoder. We empiri-
cally find that such an encoder cannot be dropped in the sce-
nario of helping NAT models, which we conjecture is due
to the better expressiveness brought by the encoder. Another
difference is that they furthermore leverage the reconstruc-
tion score to assist the inference process via re-ranking dif-
ferent candidates, while we do not perform such a step since
it hurts the efficiency of inference.

Joint Training
In the training process, all the two regularization terms are
combined with the commonly used cross-entropy loss Lce.
For a training data (x, y) in which y is the sampled transla-
tion of x from the teacher model, the total loss is:

L = Lce + αLsim + βLrec (5)

Lce =

Ty∑
t=1

logP (yt|x) (6)

where α and β are the trade-off parameters, Lsim and Lrec

respectively denotes the similarity regularization in Eqn.3
and the reconstruction regularization in Eqn. 4. We denote
our model with the two regularization terms as “NAT-REG”

Evaluation
We use multiple benchmark datasets to evaluate the effec-
tiveness of the proposed approach. We compare the pro-
posed approach with multiple baseline approaches that rep-
resent the state-of-the-art in terms of both translation accu-
racy and efficiency, and analyze the effectiveness of the two
regularization strategies. As we will show, the strategies are
effective and can lead to substantial improvements of trans-
lation accuracy with even better efficiency.

Experiment Design
Datasets We use several widely adopted benchmark
datasets to evaluate the effectiveness of our proposed
method: the IWSLT14 German to English translation
(IWSLT14 De-En), the IWSLT16 English to German
(IWSLT16 En-De), and the WMT14 English to German
(WMT14 En-De) and German to English (WMT14 De-En)
which share the same dataset. For IWSLT16 En-De, we fol-
low the dataset construction in (Gu et al. 2018; Lee, Man-
simov, and Cho 2018) with roughly 195k/1k/1k parallel
sentences as training/dev/test sets respectively. We use the
fairseq recipes1 for preprocessing data and creating dataset
split for the rest datasets. The IWSLT14 De-En contains
roughly 153k/7k/7k parallel sentences as training/dev/test
sets. The WMT14 En-De/De-En dataset is much larger with
4.5M parallel training pairs. We use Newstest2014 as test
set and Newstest2013 as dev set. We use byte pair encoding
(BPE) (Sennrich, Haddow, and Birch 2016) to segment word
tokens into subword units, forming a 32k-subword vocabu-
lary shared by source and target languages for each dataset.

1https://github.com/pytorch/fairseq

Baselines We include three latest NAT works as our base-
lines, the NAT with fertility (NAT-FT) (Gu et al. 2018), the
NAT with iterative refinement (NAT-IR) (Lee, Mansimov,
and Cho 2018) and the NAT with discrete latent variables
(LT) (Kaiser et al. 2018). For all our four tasks, we obtain
the baseline performance by either directly using the per-
formance figures reported in the previous works if they are
available or producing them by using the open source imple-
mentation of baseline algorithms on our datasets.

Model Settings For the teacher model, we follow the
same setup with previous NAT works to adopt the Trans-
former model (Vaswani et al. 2017) as teacher model for
both sequence-level knowledge distillation and inference re-
scoring. We use the same model size and hyperparameters
for each NAT model and its respective AT teacher. Here
we note that several baseline results are fairly weak prob-
ably due to the weak teacher models. For example, (Gu
et al. 2018) reports an AT teacher with 23.45 BLEU for
WMT14 En-De task, while the official number of Trans-
former is 27.3 (Vaswani et al. 2017). For fair comparison,
we bring in a weakened AT teacher model with the same
model architecture, yet sub-optimal performances similar to
the teacher models in previous works. We rerun our algo-
rithms with such weakened teacher models.

For the NAT model, we similarly adopt the Transformer
architecture. For WMT datasets, we use the hyperparame-
ter settings of base Transformer model in (Vaswani et al.
2017). For IWSLT14 DE-EN, we use the small Trans-
former setting with a 5-layer encoder and 5-layer decoder
(size of hidden states and embeddings is 256, and the num-
ber of attention heads is 4). For IWSLT16 EN-DE, we use
a slightly different version of small settings with 5 layers
from (Gu et al. 2018), where size of hidden states and em-
beddings are 278, number of attention heads is 2. For our
models with reconstruction regularization, the backward AT
models share word embeddings and the same model size
with the NAT model. Our models are implemented based
on the official TensorFlow implementation of Transformer2.

For sequence-level distillation, we set beam size to be 4.
For our model NAT-REG, we determine the trade-off param-
eters, i.e, α and β in Eqn. 5 by the BLEU on the IWSLT14
De-En dev set, and use the same values for all other datasets.
The optimal values are α = 2 and β = 0.5.

Training and Inference
We train all models using Adam following the optimizer set-
tings and learning rate schedule in Transformer(Vaswani et
al. 2017). We run the training procedure on 8/1 Nvidia M40
GPUs for WMT and IWSLT datasets respectively. Distilla-
tion and inference are run on 1 GPU.

For inference, we follow the common practice of noisy
parallel decoding (Gu et al. 2018), which generates a number
of decoding candidates in parallel and selects the best trans-
lation via re-scoring using AT teacher. In our scenario, we
generate multiple translation candidates by predicting differ-
ent target lengths Ty ∈ [Tx+∆T−B, Tx+∆T+B], which

2https://github.com/tensorflow/
tensor2tensor.



Models/Datasets WMT14
En-De

WMT14
De-En

IWSLT14
De-En

IWSLT16
En-De Latency Speedup

Autoregressive Models (AT Teachers)
Transformer (NAT-FT) 23.45 27.02 31.47† 29.70 – –
Transformer (NAT-IR) 24.57 28.47 30.90† 28.98 – –
Transformer (LT) 27.3 / / / – –
Transformer (NAT-REG) 27.3 31.29 33.52 28.35 607 ms 1.00×
Transformer (NAT-REG, Weak Teacher) 24.50 28.76 / / – –
Non-Autoregressive Models
NAT-FT (no NPD) 17.69 21.47 20.32† 26.52 39 ms 15.6×
NAT-FT (NPD rescoring 10) 18.66 22.41 21.39† 27.44 79 ms 7.68×
NAT-FT (NPD rescoring 100) 19.17 23.20 24.21† 28.16 257 ms 2.36×
NAT-IR (1 refinement) 13.91 16.77 21.86† 22.20 68† ms 8.9×
NAT-IR (10 refinements) 21.61 25.48 23.94† 27.11 404† ms 1.5×
NAT-IR (adaptive refinements) 21.54 25.43 24.63† 27.01 320† ms 1.9×
LT (no rescoring) 19.8 / / / 105 ms 5.78×
LT (rescoring 10) 21.0 / / / / /
LT (rescoring 100) 22.5 / / / / /
NAT-REG (no rescoring) 20.65 24.77 23.89 23.14 22 ms 27.6×
NAT-REG (rescoring 9) 24.61 28.90 28.04 27.02 40 ms 15.1×
NAT-REG (WT, no rescoring) 19.15 23.20 / / – –
NAT-REG (WT, rescoring 9) 22.80 27.12 / / – –

Table 1: The test set performances of AT and NAT models in BLEU score. NAT-FT, NAT-IR and LT denotes the baseline method
in (Gu et al. 2018), (Lee, Mansimov, and Cho 2018) and (Kaiser et al. 2018) respectively. NAT-REG is our proposed NAT with
two regularization terms and Transformer (NAT-REG) is correspondingly our AT teacher model. ‘Weak Teacher’ or ‘WT’ refers
to the NAT trained with weakened teacher comparable to prior works. All AT models are decoded with a beam size of 4. ‘†’
denotes baselines from our reproduction. ‘–’ denotes same numbers as above/below.

results in 2B+ 1 candidates. In our experiments, we set ∆T
to 2, −2, −1, 1 for WMT14 EN-De, De-En and IWSLT14
De-En, IWSLT16 En-De respectively according to the aver-
age length distribution in the training set.

We evaluate the model performances with tokenized case-
sensitive BLEU3 (Papineni et al. 2002) for WMT14 datasets
and tokenized case-insensitive BLEU for IWSLT14 datasets.
Latency is computed as average per sentence decoding time
(ms) on the full test set of IWSLT14 DE-EN without mini-
batching. We test latency on 1 NVIDIA Tesla P100 to keep
in line with previous works (Gu et al. 2018).

Results
We report all the results in Table 1, from which we can make
the following conclusions:
1. Our model improves NAT translation quality with a
large margin. On all the benchmark datasets except for
IWSLT16 En-De, our NAT-REG achieves the best transla-
tion quality. On the WMT datasets, NAT-REG with strong
teacher model has achieved new state-of-the-art perfor-
mances for NAT, with 24.61 in En-De and 28.90 in De-En,
which even outperform AT teachers in previous works. On
the small dataset of IWSLT16 En-De, due to the inferior of
our teacher model (28.35 vs. 29.70 of NAT-FT), our perfor-
mance is slightly weaker than the previous works.

3https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/generic/
multi-bleu.perl

2. The improvements over baseline model are not merely
brought by the stronger teacher models. In both WMT
tasks, our model achieves better performances with weaker
AT teacher model that is on par with the teacher model in
previous works (e.g. 27.12 of NAT-REG (weak teacher) vs.
25.48 of NAT-IR and 22.41 of NAT-FT on WMT14 De-En).
Therefore, it is clear that our proposal to replace hard-to-
optimize discrete variables with the simple regularization
terms, can indeed help obtain better NAT models.
3. Our NAT model achieves significantly better latency
without the intermediate discrete variables hampering
inference efficiency. For example, the speedup compared
with AT model is 15.1× when re-scoring 9 candidates,
which is comparable to NAT-FT decoding without re-
scoring (15.6×). This further verifies that by removing the
intermediate discrete variables, simply decoding via the neu-
ral networks is beneficial to improve the inference speed.

Analysis
Case Study We present several translation examples sam-
pled from the IWSLT14 De-En dataset in Table 2, including
the source sentence, the target reference (i.e., the ground-
truth translation), the translation given by the teacher model
(AT), by the basic NAT with sequence distillation (NAT-
BASE), and by our NAT with the two regularization terms
(NAT-REG). As can be seen, NAT-BASE suffers severely
from the issue of repeated translation (e.g., the ‘climate cli-
mate change change’ in the first example) and incomplete



Source: bei der coalergy sehen wir klimaveränderung als eine ernste gefahr für unser geschäft .
Reference: at coalergy we view climate change as a very serious threat to our business .

AT: in coalergy , we see climate change as a serious threat to our business .
NAT-BASE: in the coalergy , we &apos;ll see climate climate change change as a most serious danger

for our business .
NAT-REG: at coalergy , we &apos;re seeing climate change as a serious threat to our business .

Source: dies ist die großartigste zeit , die es je auf diesem planeten gab , egal , welchen maßstab sie
anlegen :gesundheit , reichtum , mobilität , gelegenheiten , sinkende krankheitsraten .

Reference: this is the greatest time there &apos;s ever been on this planet by any measure that you wish
to choose : health , wealth , mobility , opportunity , declining rates of disease .

AT: this is the greatest time you &apos;ve ever had on this planet , no matter what scale you
&apos;re putting : health , wealth , mobility , opportunities , declining disease rates .

NAT-BASE: this is the most greatest time that ever existed on this planet no matter what scale they
&apos;re imsi : : , , mobility mobility , , scaniichospital rates .

NAT-REG: this is the greatest time that we &apos;ve ever been on this planet no matter what scale they
&apos;re ianition : health , wealth , mobility , opportunities , declining disease rates .

Source: und manches davon hat funktioniert und manches nicht .
Reference: and some of it worked , and some of it didn &apos;t .

AT: and some of it worked and some of it didn &apos;t work .
NAT-BASE: and some of it worked .

NAT-REG: and some of it worked and some not .

Table 2: Translation examples from IWSLT14 De-En task. The AT result is decoded with a beam size of 4 and NAT results are
generated by re-scoring 9 candidates. We use the italic fonts to indicate the translation pieces where the NAT has the issue of
incomplete translation, and bond fonts to indicate the issue of repeated translation.

Model variants BLEU
NAT-BASE 28.73
NAT-BASE + de-duplication 29.45
NAT-BASE + universally penalize similarity 28.32
NAT-BASE + similarity regularization 30.02
NAT-BASE + reconstruction regularization 30.21
NAT-BASE + both regularizations 30.84

Table 3: Ablation study on IWLST14 De-En dev set. Results
are BLEU scores with teacher rescoring 9 candidates.

translation (e.g., incomplete translation of ‘and some of it
didn &apos;t’ in the third example), while with the two
auxiliary regularization terms brought in, the two issues are
largely alleviated.

Ablation Study To further study the effects brought by
different techniques, we show in Table 3 the translation per-
formance of different NAT model variants for the IWSLT14
De-En translation task. We see that the BLEU of the basic
NAT model could be enhanced via either of the two reg-
ularization terms by about 1 point. As a comparison, sim-
ply de-duplicating the repeated tokens brings certain level
of gain, and with the universal regularization that simply
penalizes the cosine similarity of all (ht, ht+1), the perfor-
mance even drops (from 28.73 to 28.32). When combining
both regularization strategies, the BLEU score goes higher,
which shows that the two regularization strategies are some-
what complementary to each other. A noticeable fact is that
the gain of combining both regularization strategies (about
2.1) is lower than the sum of each individual gain (about
2.8). One possible explanation may be that the two types of

errors (repeated translation and incomplete translation) can
be correlated to some extent and tackling one might help the
alleviation of the other. For example, intuitively, given the
fixed target side length Ty , if repeated tokens are removed,
more ‘valid’ tokens will occupy the position, consequently
reducing the possibility of incomplete translation.

Furthermore, we evaluate the effectiveness of alleviating
repeated translations with our proposed approach. We count
the number of de-duplication (de-dup) operations (for ex-
ample, there are 2 de-dup operations for “we &apos;ll see
climate climate change change”). The per-sentence de-dup
operations in IWSLT14 De-En dev set are 2.3 with NAT-
BASE, which has dropped to 0.9 with the introduction of
similarity regularization, clearly indicating the effectiveness
of the similarity regularization.

Conclusions
In this paper, we proposed two simple regularization strate-
gies to improve the performance of non-autoregressive ma-
chine translation (NAT) models, the similarity regularization
and reconstruction regularization, which have been shown
to be effective for addressing two major problems of NAT
models, i.e., the repeated translation and incomplete transla-
tion, respectively, consequently leading to quite strong per-
formance with fast decoding speed.

While the two regularization strategies were proposed to
improve NAT models, they may be generally applicable to
other sequence generation models. Exploring such poten-
tial would be an interesting direction for future research.
For example, we can apply our methods to other sequence
generation tasks such as image caption and text summa-
rization, with the hope of successfully deploying the non-



autoregressive models into various real-world applications.
We also plan to break the upper bound of the autoregressive
teacher model and obtain better performance than the au-
toregressive NMT model, which is possible since there is no
gap between training and inference (i.e., the exposure bias
problem for autoregressive sequence generation (Ranzato et
al. 2015)) in NAT models.
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